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Gongalo T. C. Gil and Oliver B. Fringer

The Bob and Norma Street Environmental Fluid Mechanics Laboratory,
Department of Civil and Environmental Engineering, Stanford University,
Stanford, CA, 94305, USA
gilg@stanford.edu

Abstract

We study the transport and dispersion of particles due to internal solitary waves with
trapped cores using a particle tracking numerical model coupled with a vertical random
walk to represent vertical turbulent mixing. We initialize a particle cloud ahead of a wave
with a trapped core and demonstrate that, via vertical turbulent diffusion, as the trapped
core propagates past the cloud, particles are entrained into the core and become trapped.
As the wave propagates, some of the particles are transported within the core at the speed
of the wave while the remainder exit the core due to turbulent diffusion. We show that the
magnitude of the vertical diffusivity plays a direct role in the transport/dispersion process
by studying the effects of the Péclet number, which is given by a ratio of the relative effect
of horizontal transport to that of vertical diffusion. When the Péclet number is large,
particles are unlikely to leave the core and can potentially be transported over very large
distances. On the other hand, for smaller Péclet numbers, particles are ejected from the
core more rapidly resulting in weak horizontal transport.

1 Introduction

Large amplitude internal solitary waves are ubiquitous and persistent in the Earth’s atmo-
sphere and ocean. For particular stratifications, if the maximum horizontal fluid velocity
exceeds the wave speed, regions of the flow characterized by closed isopycnals may form
(i.e. trapped cores). An atmospheric example of internal waves with trapped cores is the
Morning Glory in northeast Australia (Ouazzani et al., 2014). Trapped cores in mode-1
internal solitary waves have also been observed in a laboratory setting, notably in the
studies by Grue et al. (2000) and Carr et al. (2008). Numerical studies typically solve
the fully nonlinear Dubreil-Jacotin-Long (DJL) equation to generate internal solitary
waves with trapped cores in continuous stratification. Instabilities in internal waves with
trapped cores were studied by Carr et al. (2012) and their formation via shoaling was
studied by Lamb (2002). It is well known that internal solitary waves of large amplitude
are able to transport mass over large distances (Lamb, 1997). In the present paper, we
conduct a numerical study to assess the potential for particulate matter to entrain into
the core and investigate the decay rate of detrainment from the core for different values
of the turbulent diffusivity.

2 Particle tracking model

We consider an internal solitary wave propagating in a stratification given by
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where z is the vertical coordinate measured upward from the free surface. The reference
density is pg = 1000 kg m~3, the density difference is Ap = 2.4 kg m ~3 and the total
fluid depth is D = 60 m, the upper layer depth is h; = 3 m and the pycnocline thickness
is 0 =6 m.

To compute the velocity and density field in a solitary wave with a trapped core, we
solve the DJL equation
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where x is the horizontal coordinate, n(z, z) is the displacement of an isopycnal from its
background state and N is the buoyancy frequency. The wave-induced fluid velocity in

fixed coordinates is given by
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where c is the wave speed and e, and e, are unit vectors indicating the horizontal and ver-
tical directions, respectively. The wavelength A is defined as twice the horizontal distance
from the crest at /A = 0 to a location |z|/\ = 1/2 where the isopycnal displacement
is less than 0.1% of its maximum value. The wave period is given by T' = A/c and the
wave nonlinearity is measured with the Froude number F' = U/¢, where U is the maxi-
mum horizontal fluid velocity. We study a wave with a wavelength A = 388 m, a period
T =760 s, and a Froude number F = 1.5, sufficient to generate a clear trapped core.

We employ the eight-order accurate Runge-Kutta type Dormand-Prince or DOP853
method with added step size control and dense output for particle tracking (Dormand
and Prince, 1980). The discrete time-evolution equation for the particle positions at a
discrete time-step n is
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where t is the time, At is the time step, K = (0, ) is the turbulent diffusivity vector and R
is a Gaussian random number with zero mean and unit standard deviation. The second
term on the right hand side of (4) represents the displacement of a particle due to the
wave-induced velocity uy,, which is interpolated with a bivariate cubic spline interpolation
method to obtain the velocity at the particle location X™. The last term in (4) represents
a random spatial increment Rv2KA(t.

To measure the relative effect of vertical diffusivity and longitudinal dispersion, we
define the Péclet number as
_UA .
The largest closed isopycnal is obtained from the numerical model and the area is com-
puted allowing for the calculation of the concentration value inside the core C' = N; /A,
where NV} is the number of particles inside the core at any given time ¢, and the area of
the core A is defined by the largest closed isopycnal. Because we are advecting the steady
solution of the wave, we assume A to be constant with time. The actual concentration
value inside the core is normalized by the concentration value inside the core if all the
particles were trapped C; = N, /A, where N, is the total number of particles. Hence, to
help quantify the rate of entrainment and detraiment, we define the core concentration
ratio
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3 Results and discussion

3.1 Entrainment

To study particle entrainment into the trapped core, we introduce a particle cloud ahead
of the wave. Several values of the Péclet number are considered by varying the vertical tur-
bulent diffusivity &, see (5). The evolution of a particle cloud for time 0 < ¢ < 37 is shown
in Figure 1, which also shows the horizontal distribution of particles after twenty periods
(207") have elapsed. For this case we employ a vertical diffusivity x = 0.005 m ? s~! based
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Figure 1: Evolution of a particle cloud entraining/detraining into/from a solitary wave with a trapped
core. A zoomed-in view of the initial particle distribution is shown in the first panel. The particles that
remain inside the core by time t/T" = 20 are depicted by light circles and the rest are shown by dark
circles. The solid gray line depicts the isopycnal where p = (p1 + p1)/2 and the dotted line represents the
largest closed isopycnal. Wave propagation is from left to right. Note that, for clarity, not all particles
are included. The bottom panel represents the final particle distribution at time ¢/7T = 20.

on field measurements of large-amplitude internal solitary waves propagating towards the
shore over the Oregon continental shelf, yielding Pe = 6.0 x 10* (Moum et al., 2003).
We initialize N, = 65,536 particles uniformly distributed inside a circle with a diame-
ter d = hy, and vertical center of mass at z = —h;. Since half of the particles are initially
located above z = —hy, those particles have a higher chance of entraining and remaining
inside the core than particles that are initialized below z = —h;.

Diffusion of particles in the vicinity of the largest closed isopycnal causes a small
fraction of particles to be entrained into the core (see time 0 < ¢ < 17" in Figure 1). As
shown in Figure 2, the concentration ratio C'/Cy is a maximum at time ¢t = 27", when
approximately 8% of the particle cloud has been entrained into the core. Although the
particles can exit the core at any location along the largest closed isopycnal, a majority
of particles detrain at the trailing edge of the core. This is because they have had more
time to experience turbulent diffusion and migrate outside the largest closed isopycnal
into a region where I’ < 1 for a sufficient amount of time. The majority of particles exit



the core above the pycnocline, leading to a horizontal distribution that is confined to the
upper layer of the water column.

As depicted for times 27" < t < 3.5T in Figure 1, it takes approximately 1.57 for
the entrained particles to perform a full revolution within the core followed by further
detraining at the back of the core. As shown by the final distribution of the particles
along the wave path in Figure 1, this ejection process is repeated until the core is empty.
In the initial stages of the simulation, the particles within the core are not not well
mixed, resulting in intermittent particle detrainment over time. However, for ¢ > 15T,
the particles inside the core have become well mixed so that particle ejection from the
core occurs in a continuous fashion resulting in a more uniform distribution as highlighted
by the bottom panel of Figure 1.

To study the effect of the Péclet number, we depict the evolution of the concentration
ratio C'/C/ in Figure 2. The greatest potential for entraining particles into the core is when
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Figure 2: The effect of the Péclet number Pe on the temporal evolution of the concentration ratio C/C
for particles entraining/detraining into/from the core.

Pe is small (large diffusivity). When Pe = 6.0 x 102, approximately 22% of the particles
are entrained into the core within one wave period. Conversely, when Pe = 6.0 x 10°, less
than one percent of the particles are entrained. However, a larger diffusivity also results
in a much larger rate of detrainment, suggesting that there is an optimum value of Pe
for enhanced longitudinal dispersion of material. For example, the core is emptied four
times faster when Pe = 6.0 x 10? compared to when Pe = 6.0 x 103. Due to rapid mixing
when & is large, intermittent ejection of particles does not occur when Pe = 6.0 x 102,
but instead particles are detrained from the core continuously in time.

3.2 Detrainment

To investigate the detrainment mechanism in more detail we consider a case with the
same wave and stratification parameters as in the previous section. However, this time
we initialize the particles (N, = 131,072) with a uniform distribution within the largest
closed isopycnal (i.e. C/Cy =1 at t =0). The evolution of the entrained material is de-
picted in Figure 3, where the last particle to exit the core is depicted in a lighter color.
Because, in this case, the particles are uniformly initialized inside the core it is well mixed
by definition. Hence, the particle ejection process occurs continuously (albeit with an in-
creasingly weaker rate of detrainment), as exemplified by the final horizontal distribution
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Figure 3: Evolution of a particle cloud detraining from a solitary wave with a trapped core. The last
particle to exit the core is depicted by a light circle and the rest are shown by dark circles. The solid
gray line depicts the isopycnal where p = (p1 + p1)/2 and the dotted line represents the largest closed

isopycnal. Wave propagation is from left to right. Note that, for clarity, not all particles are included.
The bottom panel represents the final particle distribution at time ¢/T = 350.

of the particle cloud in the bottom panel of Figure 3. The final particle distribution shows
that the bulk of detrainment occurs in the first twenty periods (207").
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Figure 4: The effect of the Péclet number Pe on the temporal evolution of the concentration ratio C/C
for particles detraining from the core.

As depicted in Figure 4, the detrainment rate of is exponential with an e-folding time
scale T, that depends on the value of the turbulent diffusivity, such that we expect

C/Cy = et (7)

Namely, a larger value of turbulent diffusivity results in faster ejection rate from the core.
As highlighted in Figure 4, the e-folding time scale is T, /T = [4,24,62] for Pe = [6.0 x
103,6.0 x 10%,6.0 x 10%], respectively. Therefore, it takes a total time t/T = [40, 227, 695]
for the concentration in the core to become less than one percent (C/Cy < 1%) when Pe =
6.0 x 103,6.0 x 104, 6.0 x 107].



4 Conclusion

In this paper we investigated the potential for large amplitude internal solitary waves
with trapped cores to transport and disperse particulate matter. Depending on the value
of the Péclet number, the fraction of particles that become entrained into the core can
be relatively high (up to 22% for very low Péclet number). Based on measured oceanic
values of the turbulent diffusivity in internal solitary waves, we expect a wave to entrain
between 5 — 15% of material in the vicinity of the pycnocline as it propagates. The
detrainment rate is also a function of the Péclet number and decays exponentially, with
smaller e-folding time scales for smaller Péclet numbers. For example, for small Péclet
number, the ratio of final to initial values of the particle concentration in the core is equal
to 1/e of its initial value in approximately five wave periods. However, it may take up to
sixty wave periods if the Péclet number is large. Therefore, there is an optimum value of
the Péclet number that maximizes the number of particles that are trapped in the core.
Future work will focus on understanding this optimum Péclet number. Regardless of the
Péclet number, however, the results suggest that trapped cores can entrain and distribute
mass over distances much larger than solitary waves without trapped cores.
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