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Abstract

We present experimental results on continuously supplied and well developed gravity
currents moving from horizontal to concave or constant-slope boundaries. Results show
that the gravity current velocity is in continuous spatial development and approaches
an equilibrium state velocity only when the slope change is small. Following closely the
theory of Turner (1973) we derive a general equation for the depth-integrated velocity
including a variable slope angle and all forcing and dissipation sources. The comparison
of this equation with the experimental data reveals that bottom friction can be very large
in the region of appearance of the KH billows and of the same order of magnitude as
entrainment. The comparison with currents on straight slopes reveals that the results are
independent of bottom curvature and demonstrates that the current continuously adjusts
to the gradual slope changes.

1 Introduction

Gravity currents are key features that affect ocean, atmospheric and coastal circulation
(Baringer and Price (2001)). Ambient water and sediment from the bottom are entrained
and mixed thus changing the properties of water masses.

Laboratory studies of gravity currents have been essential in the understanding of the
dynamics of gravity currents. Most of these studies focused on gravity currents on hori-
zontal or slightly inclined boundaries, where the head is an essential feature of the flow.
The first experiments on a steady downslope flow were conducted by Ellison and Turner
(1959) who also developed the, now classical, similarity theory of these flows (Turner
(1973)). The initial developing region of an accelerating current over linear inclines (4°
up to 15°), before reaching constant Richardson number conditions, was investigated by
Pawlak and Armi (2001).

When there are rapid slope changes, the current may accelerate or decelerate which affects
interfacial instability because of changes in the Richardson number and hence vertical mix-
ing. In contrast with former studies, we consider a well developed horizontal flow, having
a large Richardson number before reaching the concave or linear slope. The acceleration
provoked by the abrupt slope change and consequent interfacial instabilities will cause
strong entrainment of ambient fluid which rapidly slows down the current. The question
is whether this flow still reach the expected equilibrium state on the slope, characterized
by a nearly constant velocity due to a balance between buoyancy and total friction.

2 Theoretical analysis

We considered the general governing equation and then proceeded with the depth inte-
grated equations following closely the procedure given in Turner (1973). The flow has
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Figure 1: Sketch of the experimental set-up and definition of notations. We recall that = = R(6y — 0)
and z = (R —r).

been considered two-dimensional and stationary. Using the boundary layer and Boussi-
nesq approximations and making use of the similarity hypothesis as in Turner (1973),
after somme arrangements we obtain the following equation
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Here, Ri = g’hcosf/U? is the bulk Richardson number with g’ cos® the buoyancy force
normal to the wall, B = g’hU is the buoyancy flux per unit width which is constant and
equal to the buoyancy flux supplied at the gate By = gjhoUy, where Uy and hy are the
velocity and height at the gate. Si, Sy are factors related to the shape of the velocity
and density profiles. For currents on slopes, typical values are S; =~ 0.3 and S, ~ 0.8,
as also estimated from the current experiments. The first two terms in the denominator
of (1) represent the total friction due to bottom drag (Cp) and interfacial entrainment
(E), while the last term in the denominator represents the pressure variation along the
slope. The third term represents the acceleration along the slope. Herein, we define an
acceleration parameter T, = (h/U)dU/dx, which can be either positive or negative as the
pressure term.

A developed gravity current on constant slope moves at constant velocity (Ellison and
Turner (1959), Britter and Linden (1980)). In this case (1) reduces to

U3 _ Sysinf
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where terms in R: have been neglected because %Ri < 1. The entrainment coefficient
is now a function of slope angle only and can be approximated by £ = 9-107%(0 + 5)
and when the slope angle 6 > 5° bottom friction can be neglected. Thus, since Sy sin6/6
varies little in the range 10° < # < 50°, the velocity is nearly the same on slopes in this
range. This would suggest that on a varying slope boundary the velocity might remain
constant provided it adjusts continuously to the varying acceleration.

3 Experimental set-up and inflow conditions

The experiments were conducted in an open glass-walled tank of approximately 6m long
connecting two 800/ reservoirs shown in figure 1. The channel cross section is reduced to
25cm wide and 20ecm deep. The first section of the channel has a total length of roughly
2.3m (with the gate at 2m upstream), is horizontal and permits the boundary layer of the
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Figure 2: Initial conditions of the gravity current flowing on the initial horizontal channel. (a) Mean
velocity profiles at X = 20em (....), 85 (—.), 195¢m (——) and 199c¢m (—) from the gate; (b) vertical
density profile obtained from the dye visualizations at D = 195¢m from the gate for experiment C3.

gravity flow to fully develop. The next section is a concave or linear slope and is free to
pivot about O (see figure 1) to vary (H — Hy) and enables different starting angles 6, for
the same radius of curvature R = 2m. The length S = R, was varied in the experiments
over concave slopes between 60cm, 80cm and 110cm resulting in 6y = 17° (experiment
C1), 23° (experiment C2) and 31.5° (experiment C3), respectively. On the concave wall
the slope angle # varies from the maximum 6, at the beginning of the slope to 0 at S (see
figure 1). Additionally, two experiments over constant slopes with § = 15° and 22° and
lengths of respectively S = 104cm and S = 73cm have been performed.

The gravity current was generated pumping salt water at a given density (¢’ = 4.5¢m/s?)
and flow rate (@ = 0.6(/s) from the first reservoir. The outlet is placed at the bottom
of the downstream channel end to control the total water depth and allow to discharge
the lower layer salty flow. Velocity measurements were made using the PIV technique
with an acquisition frequency of 30 frames/s and a spatial resolution of 0.0435cm/pizel.
Dye visualizations using Rhodamine 6G were used to estimate the density profiles and
some averaged values of the density field by normalizing locally with the maximal value.
All averaged data presented are intended to be a time average over approximately 2,000
images except if specified differently.

The velocity and the current depth at 195¢m downstream of the gate (5¢m before the
slope change) have reached U,, ~ 6cm/s and h &~ 6cm respectively resulting in a bulk
Reynolds number based on these scales of Re = 3500.

Figure 2a displays velocity profiles at 20cm, 85, 195cm and 199¢m from the gate. With
increasing distance the shape of the profile approaches that of a wall jet.

The shape of the density profile can be estimated from the dye visualizations with Rho-
damine 6G and is displayed in figure 2b at 195¢m from the gate showing a top hat shape
with a thin interface of ~ 2cm.
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Figure 3: Comparison between experimental velocity (symbols) and the predictions of (2) (dash-dotted
line) with Cp =2-107% and E = 9-107%(5 + 6) from Ellison and Turner (1959) for experiment C3 (a)
and C1 (b). The dotted line represents the free fall solution neglecting friction and pressure variations.

4 Current on the concave slope

Figure 3 display the depth integrated experimental velocity (symbols) versus the down-
stream direction for respectively experiment C3 (a) and C1 (b). The dotted line repre-
sents the free fall velocity Ujye. = \/ 2S5 Rgp(cos By — cos 6) + UZ, where the shape factor
Sy = 0.75 has been evaluated from the experimental data and U is the velocity at the
ridge = 0. In experiment C3 the flow first accelerates, reaching a maximal value at
x & 17.5¢m, which corresponds approximately to the location where KH billows first
develop. The velocity then decreases due to interfacial and bottom friction. After a
re-adjustement, the velocity increases again at x =~ 50cm, where the slope is still 16°.
At z = 115cm (0 = 0) the velocity seems to reach a value of 9cm/s. At this location
however, the flow has reached the end of the slope and it is expected to decelerate to
find again the velocity ~ +/2¢’h. This situation is very different from those normally
described in previous studies of gravity currents: here, the flow, once on the slope, passes
through acceleration-deceleration cycles before reaching the horizontal bottom at the end
of the slope, where other conditions will dominate. The equilibrium state as in equation
(2), in which the driving buoyancy force is balanced by the total friction (mainly due
to entrainment), is here never reached. This is highlighted by comparing the measured
velocities with the equilibrium state (2) indicated by the dash-dotted line in the figures
3a and b. Here the well-known entrainment law from Turner (1973) which can be fitted
by E =~ (54 6°)9-10~* when 6 > 5° has been used. Similar arguments hold for experi-
ment C2. For both experiments C3 and C2, the maximal velocity is roughly 2/3 of the
predicted equilibrium state velocity.

Experiment C1 behaves somewhat differently. We see from figure 3¢ that the velocity
increases more gently until x ~ 31¢m corresponding again to the onset of the KH insta-
bilities for this experiment. Then the velocity decreases again after a passage at a maximal
value of 7.5¢m/s. This maximal velocity value is very close to the equilibrium state ve-
locity of 8.4cm/s. For x > 50cm, we observe an agreement between the equilibrium state
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Figure 4: Entrainment coefficients E = 1/Ud(Uh)/dz and total friction (Cp + F) determined from
equation (1) using the experimental data for experiment C3. —— E = (5+6)9-10~%.

velocity and the experimental velocity, which are both decreasing rapidly.

In summary, we can state that when the initial slope angle is large the development of
the gravity flow happens through acceleration and deceleration cycles. When the initial
slope angle is small as for experiment C1, the acceleration is less and there is nearly a
smooth approach of an equilibrium state.

It is clear that a smooth transition to an equilibrium flow governed by (2) requires that
the initial acceleration of the current, expressed by an acceleration parameter, remains
below a certain value. The local value of T,,is not appropriate because it depends on
the flow behaviour. We can introduce an overall acceleration parameter in the form
T, = hAU/ (U, 2,,), where x,, is the position of maximum velocity U, , AU = U, —
U; and h; is the initial current height. In experiment C3, with z,, = 17.5¢m, U,, =
8.5ecm/s, AU = 2.5¢m/s and h; = bem, the value of this acceleration parameter is
T, = 0.07. For experiment C1, x,, = 3lem, U,, = 7.5cm/s, AU = 2.5cm/s and h; =
4em, the value is T, = 0.05. These values are close to the local T, estimated from the
experiments. The implication is that for a smooth transition from U; to an equilibrium
velocity U, the acceleration parameter needs to be T, < 0.05 but no critical value can
be given. Low acceleration requires either a small slope or/and an interfacial instability
near the beginning of slope change.

4.1 Entrainment

Given the velocity fields data, we can obtain estimates of the entrainment rates. The
entrainment rate can thus be calculated from the variation of the flow rate observed in the
experiments normalized by a local velocity relevant for the layer, i.e. ' = %% = % +T,.
The experimental entrainment rates for experiment C3 are presented in figure 4a. An
alternative estimate of the entrainment rate can be made using equation (1). We can

obtain a total friction coefficient (Cp + E) by rearranging (1) equation in the form

Sy sinf 1 dRi

1 :
CD + FE = U37/3 — Ta (]. + 581RZ) - §Slhf% (3)
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Figure 5: (a) Selected vertical velocity profiles of Reynolds stresses w/w’ at three x positions on the

concave slopes normalized with the maximal velocity U2 for experiment C3. .... plane wall jet Zhou et al.
(1996). (b) Zoomed views of the current at onset of KH instability of one experiment over straight slope
(0 = 15°), showing the development of large bottom billows coupled with the development of KH billows.

where the acceleration term, T, the change in Ri and the shape factor S; are determined
from the experiments. The extrapolated total friction coefficient is plotted in figure 4b.
The comparison between the two figures allows an estimate of the bottom friction co-
efficient Cp and to verify the validity of the experimental entrainment coefficient £ at
the locations where T, = 0 (the term of the variation of Ri is generally one order of
magnitude less than the other terms and can thus be neglected). In figure 4a, we see that
at x ~ 20cm corresponding approximately to the location of onset of the KH instabili-
ties, the entrainment coefficient is £ ~ 0.05 and at the same location, the total friction
coefficient is roughly the same. For 20cm < x < 30cm however, while the entrainment
rates remain approximately E ~ 0.05, the total friction coefficient (Cp + E) increases
significantly with the largest values approaching 0.18. This implies (besides any source
of experimental error, as for instance the power of 3 of the velocity in (3), the difficulties
in determining 7, and the gradients of dRi/dx), that the bottom friction coefficient must
become very large, of order 107! (figure 4b).

An estimate of the bottom friction coefficient Cp can be obtained from the velocity
fluctuations in the boundary layer. Selected vertical profiles at different sections of the
Reynolds stresses w/w’ normalized using the local maximal velocity U,, are presented in
figure 5a for the three experiment C3. The dotted line represents the measured values
from Zhou et al. (1996) obtained for a wall jet. We see that in experiment C3 the values
are very large as compared to the classical wall jet, reaching 5% of the maximal velocity.

This high shear stress is due to the particular development of the KH billows (merging
process) which cause locally a significant decrease of the lower layer depth. Coupled with
this phenomenon, we have also observed the generation of bottom billows in the bottom
boundary layer rotating in opposite direction as compared to the KH billows. This is
shown in figure 5b, which displays zoomed images of the dye visualizations in the regions
of maximal bottom friction for one experiment over straight slope with 6 = 15°.

The question now is whether the current on straight slopes behaves similarly to that on



curved bottom. The large angle at the beginning and its following rapid decrease could
cause the overshoot as the acceleration is inhibited by both the decreasing angle and the
unstable interface, generating KH billows. We performed two additional experiments with
a mean constant slope angle of 22° and of 15°. A very similar behavior as compared to
the experiments over the concave bottom has been noticed. The depth integrated velocity
behaves also very similar as for the curved boundaryand we observed the same behavior
for the bottom friction coefficient and Reynolds stresses which presents very high values.

From this comparison we conclude that the slope curvature has apparently no effect on
the spatial flow development.

5 Conclusions

The main results that emerge from the present study are: (i) when a gravity current with
an initially stable interface on horizontal or a nearly horizontal boundary moves onto a
steep slope, it undergoes a cycle of accelerations and decelerations and does not reach the
constant equilibrium velocity within a distance of about 30h¢ considered. (ii) The first KH
billows cause boundary layer separation and reattachment that leads to a large boundary
friction coefficient which is of the order of the interfacial drag due to entrainment. (iii)
The spatial development on a concave boundary, more representative of natural slopes, is
very similar to that on a constant slope boundary.

In order to make the results of more general interest, notably the velocity, it is appropriate
to represent the development in terms of non-dimensional quantities. From (1) we get
the velocity scale (Bysinf)'/?. An appropriate length scale is the distance . where KH
instability is first observed and the current velocity reaches its maximum. This is related
to a decrease in Richardson number down to a critical value Rz,
/
Ri = %,—Z cos ) = % cos = Ri,. (4)

Using the free fall velocity Ufyee = \/ 2G0c.1n sin 0 + UZ, where Uy is the velocity at slope

begin, we get an equation for z.y, as a function of the known initial parameters By, g,
Uy and 0

N 2/3
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For the critical Richardson number we take the experimental value of Ri. = 0.13 at onset
of KH instability and on the concave boundary we take for the slope angle § = 6, that is a
mean slope between x = 0 and x at KH instability onset. The theoretical predictions for
T are in good agreement with the experimental observations of . .., for all experiments.

Leth = =
2gysind

In figure 6b the depth integrated velocities for all experiments using x. = ¢ ¢qp to nor-
malize the downstream direction x and using (B sin #)'/? to normalize the velocity U are
plotted. We see that the velocity data nicely collapse on a single curve z/x. < 1, with a
non-dimensional velocity maximum of about 2.6. Different decays are observed for x > z,
for the different experiments, including experiment C1, where an overlap between the
equilibrium state velocity and the experimental velocity has been highlighted in § 4 (cf.
figure 3b) close to the end of the slope, where bottom drag starts to be dominant. The first
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Figure 6: Depth integrated velocity normalized by (Bysinf)'/3 along the downstream direction normal-
ized by 2. = ¢ esp for all experiments on concave and straight slopes.

velocity minimum is at x/x. ~ 2.5. An overall acceleration parameter T, = Uh—f—U has
been defined with 7, > 0.05 for currents with strong velocity oscillations, and a smooth

transition for T, < 0.05.

The high values of C'p obtained from velocity data are consistent with the observed values
of the Reynolds stresses in the boundary layer, reaching values of w/w’/U2 of 5 to 8%.
These are much larger and are closer to the bottom boundary as compared to classical
wall jets. Dye visualizations have shown the continuous formation of billows (1em) in
the bottom boundary layer coupled with the development of the large KH billows at
the interface (figure 5b). The small billows in the boundary layer are characteristic of
boundary layer separation.
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