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2Univ Lyon, UJM-Saint-Etienne, LMFA site de Saint Etienne UMR CNRS 5509,

F-42023, Saint-Etienne, France
ernesto.horne@ec-lyon.fr

Abstract
Direct Numerical Simulations of a linearly stratified bounded fluid in decaying turbulence
are performed. The abscence of vertical periodicity allows the stratification of the sys-
tem to evolve in time. We observe that mixing efficiency increases as a function of the
Richardson number Ri, and saturates to a maximum value of 0.25. This evolution adjusts
quantitatively to the statistical prediction of Venaille et al. (2016).

1 Introduction

Turbulent mixing in the ocean interior plays a crucial role in its global energy budget. This
mixing partially drives large scale dynamics, as evidenced in the meridional overturning
circulation (Wunsch and Ferrari (2004)). In addition, vertical transport in the ocean
is substantial for sequestering large quantities of dissolved greenhouse gases from the
atmosphere to the deep ocean. The proportion of energy transferred from turbulent
structures to effective mixing is very difficult to estimate through observations (Ivey et al.
(2008)), and the details of this energy transfer is yet not fully understood.

Osborn proposed a simple relation between the turbulent kinematic dissipation εk and
the irreversible mixing εp, εp = Γ · εk with a constant value for the mixing coefficient
Γ = 0.2 (Osborn (1980)). It has been found in experimental studies that the mixing
coefficient is far from being constant Barry et al. (2001), Rehmann and Koseff (2004). A
turbulent flow in the limit of weak stratification will dissipate more kinetic energy that it
will produce irreversible mixing, that is Γ · εk → 0. We therefore expect a dependency of
Γ with respect to the stratification.

Our goal is to study the mixing efficiency and the dynamics of stratified turbulence by
means of high resolution Direct Numerical Simulations. We introduce boundaries at the
top and bottom of our domain which allows the mean stratification to evolve in time. This
differs with the classical approach of homogeneous stratified turbulence (as for example
Maffioli et al. (2016)) where the background stratification is fixed. The main interest of
our approach is that the irreversible mixing is directly computed from the full density
field.
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2 Framework

Governing equations

We consider an uncompresible linearly stratified fluid in decaying turbulence. It is mod-
elized by the Navier-Stokes equation under Bousinessq approximation. The dimensionless
equations read,

∂u∗

∂t
− ω∗ × u∗ = −∇p∗ − θ∗ ·Ri · z∗ +

1

Re
· ∇2u∗, (1)(

∂

∂t∗
+ u∗ · ∇

)
θ∗ =

1

Re · Sc
∇2θ∗, (2)

∇ · u∗ = 0, (3)

where θ∗ = 1
θ0
· ρ−ρ0

ρ0
is the dimensionless reduced density. ρ is the total density and we

introduce ρ0 =< ρ > the spatial average of ρ (in the following we will use <> for spatial

averages over the volume). θ0 =
N2

0 ·H
g

is the initial difference between the top and bottom
reduced densities, where H the height of the domain, g the acceleration of the gravity
and N2

0 = − g
ρ0

dρ
dz

the initial square buoyancy frequency. ω∗ is the vorticity, p∗ the total

pressure and u∗ = u/u0 is the dimensionless velocity. The Reynolds, Richardson and
Schmidt numbers are respectively,

Re =
`0 · u0
ν

, Ri =
θ0 · g · `0

u20
, Sc =

ν

κ
. (4)

where `0 is the integral lengthscale and u0 the r.m.s. of the initial turbulent velocity field.

The Richardson number can also be rewritten as Ri =
N2

0 `0H

u20
.

Energy transfer equations

The global kinetic and potential energies of the flow are defined respectively as,

Ek =
ρ0
2
· V · (< u2 > − < u >2), (5)

Ep = g

∫
V

ρ · z dV. (6)

One can develop the evolution of the energy transfer by using the approach of Winters
et al. (1995).

∂Ek
∂t

= −Φz − εk, (7)

∂Ep
∂t

= Φz + Φi, (8)

∂Eb
∂t

= εp, (9)

∂Ea
∂t

= Φz + Φi − εp, (10)
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where the background and available potential energies are defined respectively,

Eb = g

∫
V

ρs · z dV, (11)

Ea = g

∫
V

(ρ− ρs) · z dV = (Ep − Eb), (12)

whith ρs the 3D vertically sorted density field. This sorted state corresponds to the min-
imum potential energy of the system, noted Eb. Ea gives a measure of the amount of
potential energy available to be transformed in irreversible mixing. The viscous dissipa-
tion rate, the reversible vertical buoyancy flux and the conversion rate from internal to
potential energy are respectively,

εk =

∫
V

µ

[
2

(
∂ui
∂xi

)2

+

(
∂ui
∂xj

+
∂uj
∂xi

)2
]

dV, (13)

Φz = g

∫
V

ρ · w dV, (14)

Φi = −κ · g · A · (ρtop − ρbot), (15)

where w is the vertical component of the velocity and ρtop (resp. ρbot) is the average of ρ
over the horizontal surface A at the top (resp. bottom) of the domain. ∂Eb

∂t
= εp quantifies

the irreversible mixing. This scheme allows to distinguish the increase of potential energy
produced by waves and overturns (Φz) with respect to the increase produced by the
irreversible mixing (εp) and with respect to the conversion rate from internal to potential
energy (Φi).

Mixing in stratified turbulence

The mixing produced by a turbulent flow over a stable stratified fluid is usually quantified
by the mixing coefficient Γ = εp

εk
or the mixing efficiency η = εp

εp+εk
, which are instanta-

neous, spatially averaged quantities. If it makes sense to compare the instantaneous values
of εp and εk in stationary turbulence, it is no longer the case in the context of decaying
turbulence. We thus define the cumulative mixing coefficient and the cumulative mixing
efficiency as,

ΓC =

∫ t
0
εp · dt∫ t

0
εk · dt

, ηC =

∫ t
0
εp · dt∫ t

0
εp · dt+

∫ t
0
εk · dt

(16)

3 Numerical method

A set of 3D Direct Numerical Simulations (DNS) of a turbulent stratified flow are per-
formed by solving Navier-Stokes equation under Boussinesq approximation. A classical
Fourier pseudo-spectral method is used with 10243 grid points. A porous penalization
region is introduced to take into account non-flux conditions at the bottom and at the
top of the box (see Kadoch et al. (2012)), and we assume periodicity in the horizontal
plane. The formulation of the momentum and the mass conservation equation becomes:
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∂u∗

∂t∗
− ω∗ × u∗ = ∇p∗ − θ∗ ·Ri · z∗ · (1−H) +

1

Re
· ∇2 − 1

ηp
·H · (u∗ − us) (17)

∂θ∗

∂t∗
= [(1−H) · u∗ · θ∗ + us ·H · θ∗] +∇ ·

{[ 1

Re · Sc
(1−H) + λ ·H

]
· ∇θ∗

}
(18)

∇ · u∗ = 0 (19)

where H is a step function vanishing in the fluid domain. ηp = 10−3 is the porous media
permeability, λ = 10−8 ·ηp is the diffusion term in the porous media, and us is the velocity
of the boundaries (in this work us = 0). A turbulent velocity field is introduced at t = 0
which perturbs the initially stable buoyancy profile. The turbulent flow freely decays over
several overturning times `0/u0.

The parameters of the DNS runs that are varied are shown in table 1. The Schmidt
number is taken constant for all runs, Sc = 5. We based our parameters on typical
physical experiment of water grid turbulence performed at LMFA, where u0 = 0.1 m/s,
`0 = 0.01 m , H = 20 · `0 and we impose different values of N .

Table 1: Main parameters of the DNS: Re the Reynolds number and Ri the Richardson number.

Run A0 A1 A2 A′2 A′′2 A3 A4 A5 A6

Re 1000 1000 1000 1600 2500 1000 1000 1000 1000
Ri 1 4 16 16 16 64 256 1024 4096

4 Results

Energy budget

A snapshot of a vertical cut of the reduced density field θ∗ is shown in figure 1(a). In
figure 1(b) is shown a vertical profile of the horizontally averaged reduced density, for
the full reduced density and for the 3D vertically sorted reduced density field. The
instantaneous reduced density field is used to compute Ep, while the instantaneous sorted
reduced density field is used to compute Eb. Ep will contain the energy increase produced
by the mixing within the flow in addition to the energy fluctuations associated to the
reversible vertical buoyancy flux of waves and overturns. In contrast, the variation of Eb
is associated only to irreversible mixing.

The evolution of Ep, Eb, Ea and Ek are shown in figure 2 for run A2. The response
of the buoyancy field to the initially imposed velocity field produces a maximum of Ea at
t ≈ π

N0
, and this quantity further oscillates at the frequency close to N0 while it slowly

decays, as predicted by Salhi and Cambon (2007). In contrast, the background potential
energy Eb, monotonically increases reaching a final value which represents the amount of
irreversible mixing that occurred during the run. This last term and Ep will converge to
Eb when the kinetic energy of the system goes to zero. In consequence, at the end of the
simulation no available energy (Ea) is left to produce irreversible mixing.
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Figure 1: (a) Vertical cut of the instantaneous reduced density field θ∗ at t ·N0/(2π) = 0.7 in run A2. (b)
Vertical profile of the horizontal mean reduced density field (red line) and horizontal mean of the sorted
reduced density field (green line). The initial reduced density profile is also indicated (dashed line). The
penalization region is indicated by two arrows and the letter P between both figures.

Figure 2: Evolution of the energies in run A2 as a function of t · N0/(2π). E = Ep + Ek is the total
energy. The inset shows a zoom in the lowest values of energy to highlight the evolution of the potential
energies.

Energy transfer

In figure 3 are shown the energy transfer terms expressed in equations (7-10) for run
A3. Initially, the kinetic energy transfer is dominant and is compensated by the viscous
dissipation term εk. The energy that is transfered to irreversible mixing εp presents
a maximum at short times, before decaying and reaching the ultimate value φi. We
introduce here the time Td, at which εp becomes smaller than 2Φi. After this time, the
irreversible mixing generated by the conversion rate from internal to potential energy is
dominant with respect to the irreversible mixing generated by turbulence.
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Figure 3: Evolution of the temporal energy transfer terms of run A3 as a function of t · N0/(2π). The
inset compares εp and Φi in order to define the time Td where εp < 2Φi.

Figure 4: ηC as a function of RiC for all DNS runs. Each symbol indicates the value of the mixing
efficiency integrated in a interval of time [0, Td]. In blue solid line is shown the prediction of the mixing
efficiency adapted from the statistical theory of Venaille et al. (2016).

Mixing efficiency

We will now estimate the cumulative mixing efficiency ηC at time Td. The pertinent
Richardson number at this stage of the DNS is given by,

RiC = Ri · Ek(t = 0)∫ Td
0
εk · dt

. (20)
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In figure 4, ηC is plotted as a function of RiC and compared to the prediction of the
statistical theory proposed by Venaille et al. (2016). The agreement is remarkably good.

Conclusions and perspectives

We computed the mixing efficiency from high resolution DNS of stratified turbulence in
a large range of Richardson numbers. This allowed us to observe the increase of η with
Ri, which is in very good agreement with the statistical theory for stratified turbulence
proposed by Venaille et al. (2016). This study will be extended to the case of a two layer
stratification.
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