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Abstract

The results from a series of direct numerical simulations of turbulent stably stratified
shear flow are used to determine the orientation of structures present in such flows. The
structures are identified using the three-dimensional two-point autocorrelation coefficient
of velocity magnitude and vorticity magnitude. Surfaces of a constant autocorrelation
coefficient value are observed to resemble an ellipsoid. A least-squares fit of an ellipsoid
to the autocorrelation coefficient isosurfaces is performed and the major and minor axes
are determined. The inclination angle of the autocorrelation surface (and thus the flow
structures) is then determined from the axes. The inclination angle value is fairly unaf-
fected by the choice of autocorrelation coefficient value. The inclination angle is observed
to decrease with increasing Richardson number and, hence, directly related to the growth
or decay rate of the turbulence in stratified shear flow.

1 Introduction

Homogeneous turbulence in a stably stratified shear flow has been studied extensively in
the past due to the wide range of applications in the geophysical environment. The flow
considered here has uniform vertical shear with constant rate S = ∂U/∂y and uniform
vertical stratification with constant Brunt-Väisälä frequency N =

√

−g/ρ0∂̺/∂y. In the
present study, the Richardson number Ri = N2/S2 is varied from Ri = 0, corresponding
to unstratified shear flow, to Ri = 1, corresponding to strongly stratified shear flow.

Comprehensive studies of homogeneous turbulent stratified shear flows include the exper-
imental work by Komori et al. (1983), Rohr et al. (1988), Piccirillo and Van Atta (1997),
and Keller and Van Atta (2000) as well as the numerical simulations of Gerz et al. (1989),
Holt et al. (1992), Jacobitz et al. (1997), and Jacobitz (2002). Turbulent shear flows, in-
cluding flows with density stratification or system rotation, have identified flow structures
inclined in the vertical direction to the downstream direction (e.g. Brethouwer (2005)
or Jacobitz et al. (2008)). The three-dimensional two-point autocorrelation coefficient
of velocity magnitude and vorticity magnitude is used here to determine the inclination
angle of flow structures and to study its dependence on the Richardson number.

2 Numerical Approach

The direct numerical simulations solve the incompressible Navier-Stokes equations in the
Boussinesq approximation and an advection-diffusion equation for the fluctuating density.
The equations of motion are solved in the Rogallo frame (see Rogallo (1981)) and periodic
boundary conditions are applied. The spatial discretization is accomplished by a Fourier
collocation method and the solution is advanced in time by a fourth-order Runge-Kutta
method. The simulations are performed on a grid with 256× 256× 256 points.
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Figure 1: Evolution of the turbulent kinetic energy K (left) and the growth rate γ (right) with non-
dimensional time St.

The initial conditions are taken from a simulation of decaying isotropic turbulence without
density fluctuations with an initial Taylor-microscale Reynolds number Reλ = 56 and an
initial shear number SK/ǫ = 2. The Richardson number is varied from Ri = 0 to Ri = 1.
Details on the numerical method can be found in Jacobitz et al. (1997) and the simulation
results have previously been used to study acceleration statistics in turbulent stratified
shear flows by Jacobitz et al. (2015).

3 Flow Evolution

The evolution of the flow in non-dimensional time St is shown in figure 1. The turbulent
kinetic energy K = 1/2(u2 + v2 + w2) (figure 1, left) initially decays due to the isotropic
initial conditions. Eventually, the turbulent kinetic energy grows approximately expo-
nentially for small values of the Richardson number Ri and K decays for large values of
Ri. The evolution of K is found to change from growth to decay at a critical Richardson
number of about Ricr ≈ 0.15.

The transport equation of the turbulent kinetic energy K can be written in the following
non-dimensional form:

γ =
1

SK

dK

dt
=

P

SK
−

B

SK
−

ǫ

SK
(1)

Here, γ is the exponential growth rate of K, P/(SK) the normalized production rate with
P = −Suv, B/(SK) the normalized buoyancy flux with B = g/ρ0vρ, and ǫ/(SK) the
normalized dissipation rate.

The evolution of the growth rate γ (figure 1, right) indicates that γ eventually reaches
an approximately constant value, indicating an exponential evolution of the flow. The
growth rate γ is positive for cases with growing turbulent kinetic energy K and negative
for decaying cases. The reduction in γ with increasing Richardson number Ri is mainly
due to a decreased normalized production rate P/(SK).

Figure 2 shows the magnitude of velocity q =
√
2K (top) and the magnitude of vorticity

ω (bottom) for two cases with Richardson numbers Ri = 0.1 (left) and Ri = 1 (right)
in the plane of shear (x-y-plane) at non-dimensional time St = 10 using the same color
map to indicate the decay of the strongly stratified case. Turbulent structures inclined
in the vertical direction to the downstream directions are visible. The structures have
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Figure 2: Velocity magnitude (top) and vorticity magnitude (bottom) in the plane of shear for Richardson
numbers Ri = 0.1 (left) and Ri = 1 (right) at non-dimensional time St = 10.

the largest inclination angle for unstratified shear flow. With increasing stratification,
vertical velocity fluctuations are suppressed and the flow structures are less inclined to
the downstream direction.

4 Structure Orientation

In order to quantify the structure orientation, the three-dimensional two-point autocor-
relation coefficient Co of velocity magnitude q and vorticity magnitude ω is considered:

Coq(r) =
q(x)q(x+ r)

q2
and Coω(r) =

ω(x)ω(x+ r)

ω2
(2)

Figure 3 shows isosurfaces of constant two-point autocorrelation coefficient Co = 0.3
of velocity magnitude q (top) and vorticity magnitude ω (bottom) for two cases with
Richardson numbers Ri = 0.1 (left) and Ri = 1 (right) at non-dimensional time St = 10.
Also shown in the figure are ellipsoid least-squares fits to the isosurfaces. The fitted
ellipsoids allow for the computation of the major and minor axes as well as the inclination
angle α of the ellipsoid fit to the downstream direction. The orientation of the two-point
autocorrelation coefficients isosurface closely matches the inclination angle of the original
structures visible in figure 2 and, hence, the ellipsoid fit allows for its determination.

Figure 4 shows the dependence of the angle α on the two-point autocorrelation coefficient
Co of velocity magnitude q (top) and vorticity magnitude ω (bottom) used in its deter-
mination for two cases with Richardson numbers Ri = 0.1 (left) and Ri = 1 (right) at
non-dimensional time St = 10. For all Ri, the inclination angle value does not change
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Figure 3: Iso-surface of the three-dimensional two-point autocorrelation of velocity magnitude (top) and
vorticity magnitude (bottom) for a correlation coefficient of 0.3 in the plane of shear for Richardson
numbers Ri = 0.1 (left) and Ri = 1 (right) at non-dimensional time St = 10.

substantially for an interval of autocorrelation coefficients ranging from about Co = 0.2
to Co = 0.6. The figure also indicates the number of isovalues used in the least-squares
fit of the ellipsoid. For large autocorrelation coefficient values, only few points are used
to fit the ellipsoid and its orientation is not always well-defined. For small values, the
isosurface does not resemble an ellipsoid shape.

5 Inclination Angles

Figure 5 shows the evolution of the inclination angle α determined from two-point auto-
correlation coefficients of velocity magnitude (left) and vorticity magnitude (right) with
non-dimensional time St. For the isotropic initial condition, the isosurfaces of autocor-
relation coefficient form spheres and the inclination angle is not defined. The inclination
angles α decrease with increasing St and eventually reach approximately constant values
for most values of the Richardson number. At a given St, the values of α decrease with
increasing stratification.

Figure 6 compares the dependence of the growth rate γ (left) on the Richardson number Ri
to that of the inclination angle α (right) at non-dimensional time St = 10. Both γ and α
decrease with increasing stratification. While the angles determined from autocorrelation
coefficients of velocity magnitude and vorticity magnitude are similar, the angles obtained
from vorticity magnitude are always a little larger than those from velocity magnitude.

The dependence of the inclination angle α on the growth rate γ at non-dimensional time
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Figure 4: Dependence of the inclination angle α of the three-dimensional two-point autocorrelation of
velocity magnitude (top) and vorticity magnitude (bottom) on the value of the correlation coefficient Co

chosen for Richardson numbers Ri = 0.1 (left) and Ri = 1 (right) at non-dimensional time St = 10. The
color scale indicates the number of data points available to determine the angle.

St = 10 is given in figure 7. Again, the angle obtained from vorticity magnitude is a
little larger than that from velocity magnitude. In both cases, an approximately linear
relationship between the inclination angle and the growth rate is obtained. Hence, it
appears that the eventual evolution of the turbulence in stratified shear flow is directly
related to the orientation of structures present in the flow.

6 Summary

Using the results of direct numerical simulations of turbulent stratified shear flows, the
orientation of structures present in the flows is determined using isosurfaces of three-
dimensional two-point autocorrelation coefficients of velocity magnitude and vorticity
magnitude. The isosurfaces have an approximately ellipsoid shape and the inclination
angle of the structures are determined from the major and minor axes of an ellipsoid
least-squares fit to the isosurfaces.

The angles were observed to decrease with increasing Richardson number and an ap-
proximately linear relationship between the inclination angle and the growth rate of the
turbulent kinetic energy was observed. Therefore, the inclination angle of structures in
turbulent stratified shear flow appears to be directly related to the dynamics of the tur-
bulent motion.
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Figure 5: Evolution of the inclination angle α of velocity magnitude (left) and vorticity magnitude (right)
with non-dimensional time St.
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Figure 6: Dependence of the growth rate γ (left) and the inclination angle α (right) on the Richardson
number Ri at non-dimensional time St = 10.
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Figure 7: Dependence of the inclination angle α on the growth rate γ at non-dimensional time St = 10.
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