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Abstract
We investigate the dynamic stability of the analytically obtained downslope flow profiles
of Winters and Armi (2014), characterized by an accelerating, stratified flowing layer
beneath a homogeneous and stagnant isolating layer. We show that the inclusion of the
isolating layer is an essential component of the stability analysis and further clarify the
nature and mechanism of the instability in light of the wave-interaction theory. The spatial
stability problem is also briefly examined in order to estimate the downstream location
where finite amplitude features might manifest in streamwise slowly-varying flows over
topography.

1 Introduction and background

Features reminiscent of overturning Kelvin-Helmholtz billows are often seen in the lee of
topographically controlled stratified flows in the atmosphere and ocean. Despite a wealth
of literature on the subject (e.g. Smith (1991), Scinocca and Peltier (1989), Farmer and
Armi (1999), Armi and Mayr (2007) and references contained therein), the origin of these
instabilities and their growth rate remain uncertain. Figure 1 shows the idealized spatial
structure of the flows under consideration. A jet-like upstream profile with constant
stratification, N0 develops into a strong, thinning downslope flow beneath a layer of
nearly stagnant, mixed fluid above that we call the isolating layer.

Shear instability was speculated to be the source of pulsations revealed in observations
of the Boulder windstorm by Lilly (1978). However, spatial and temporal stability analysis
of downslope flow solutions obtained from 2D numerical simulations of this flow (Peltier
and Scinocca (1990)) as well as from earlier analytical solutions (Smith (1991)) severely
underpredicted the growth rate and onset of instability.

Recently, Winters and Armi (2014) accounted for the upstream influence of the to-
pography in constructing optimally-controlled, jet-like solutions that thin and accelerate
over the crest. These solutions are valid in the asymptotic limit of tall topography and
or slow flow/weak stratification and are characterized by blocking and the formation of a
thinning accelerating jet below an isolating layer. Our objective here is to investigate the
stability of these flow profiles at different downstream locations and examine whether the
predictions are consistent with observed downslope flow pulsations.

2 A simple mathematical representation for downstream flow configurations

The upstream profile is a parabolic jet with an overlying dynamically uncoupled layer,
each of height H for simplicity. The upstream buoyancy frequency is constant and equal
to N0. As the flow develops, at each downstream location, it remains quasi-jet-like, but
with a reduced thickness h = H − δi, a stronger stratification and an isolating layer of
height δi. The volumetric flow rate, Q = (2/3)U0H upstream remains conserved. Next,
we define
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Figure 1: The downslope jet setting where flow configurations described above occur. The bottom
panel displays the typical velocity and stratification profiles at the blocking point and an arbitrary point
downstream of the crest, labelled 1 and 2 respectively.
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and for ease of computation, at each α, we represent the flow mathematically as a super-
position of a parabolic jet with maximum Uδi and a linear component that vanishes at
zb + h. Introducing a bottom velocity parameter β, the velocity of the bottom streamline
in this representation is given by

ub = βUδi (2)

For different values of α, values of β and the fit they produced to the actual solutions
of Winters and Armi (2014) are shown in figure 2. The velocity and density profiles are
then given by,

Ūd(zd) =

{
0, zb + h ≤ zd ≤ zb + 2H,

4Uδi
[
zd
h
− ( zd

h
)2]+

βUδi
h

(h− zd), zb ≤ zd ≤ zb + h.
[m/s] (3)

ρ̄d(z) =


ρ0 + ∆ρ− ∆ρ

2h
zd, zb ≤ zd ≤ zb + h,

ρ0 + ∆ρ
2
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ρ0 + ∆ρ
2
− ∆ρ

2H
(zd −H), zb +H ≤ zd ≤ zb + 2H,

[kg/m3] (4)

where the overbar is used to denote the background flow field and the subscript ‘d’
indicates dimensional quantities. Note that Q conservation and the bottom velocity pa-
rameter β jointly determine the parabolic maximum Uδi at any given downstream position.
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The above piecewise representations for the velocity and density introduce discon-
tinuities in the derivatives of the velocity and density at h(x) which are smoothed for
numerical discretization purposes.

3 Mathematical formulation of the streamwise-local stability problems

The stability problem is developed using the primitive variable formulation and the normal
mode decomposition in non-dimensional form. We investigate the stability of a steady
parallel, stratified shear flow of the form, ~u = Ū(z)̂i; ρ = ρ̄(z) to 2D normal mode
perturbations of the form,

(u′, w′, ρ′, p′) = (û(z), ŵ(z), ρ̂(z), p̂(z))eik(x−ct). (5)

Substituting these in the inviscid Bousinnesq equations of motion and neglecting
quadratic terms in the perturbation quantities, on a Nz sized grid, this can be shown
to reduce to a 4Nz × 4Nz generalized eigenvalue problem,

Av = cBv, (6)

where A is a block diagonal matrix comprising 16 Nz × Nz blocks whose block entries
depend on the background flow variables and the wave number k, B is a diagonal matrix
and v is a column vector of the eigenfunctions.

From these, we may deduce the temporal growth rate

ωTg = kci, (7)

where the subscript i denotes imaginary part.

4 Numerical implementation

A Chebyshev pseudo-spectral collocation method is used to compute derivatives and con-
struct the coefficient matrices. Boundary conditions of no normal flow ŵ(z) = 0 are
imposed on the upper and lower boundaries. Note that the upper boundary is well above
the location where the flowing layer meets the isolating layer and so the inflection point
in Ū(z) at that location can affect the solutions.

5 Results

Note again that, with the present analytical representation, the values α and Q conser-
vation completely determine the downstream flow profiles and define the stability prob-
lem. The optimal solution of Winters and Armi (2014) is characterized by an upstream
parabolic jet with,

U0 = (3/2)N0H/π. (8)

which can be easily shown to give a minimum Richardson number Rimin = π2/36 >
1/4, which is stable by the Miles-Howard theorem. At each subsequent downstream
location, we solve the eigenvalue problem and extract the wave number kmax and phase
speed cr associated with the largest growth rate. Figure 3 displays the eigenfunctions
‖û(z)| and ‖ŵ(z)| of the fastest growing unstable mode at each downstream location, and
table 1 summarizes their characteristics.
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Figure 2: The Winters and Armi (2014) background velocity profiles at different downstream locations
for the optimally controlled stratified downslope flow. The dashed lines are the exact solutions and the
solid lines are the representations of these solutions using β and Q conservation.
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Figure 3: Normalized eigenfunctions (a)|û(z)| and (b)|ŵ(z)| for the profiles representative of the solutions
of Winters and Armi (2014).

Table 1: Characteristics of the unstable mode for the flow profiles representative of the exact solutions
of Winters and Armi (2014)

α β kmax ωTg te Le(= cg/ω
T
g ) Tp(secs) λ(ms)

0.66 0.89 4.0 0.0743 13.46 4.05 490 1933
0.64 1.00 3.6 0.0807 12.39 3.79 496 2083
0.62 1.09 2.8 0.0928 10.78 3.33 571 2595
0.6 1.19 2.8 0.1093 9.15 2.74 532 2520
0.5 1.94 2.0 0.1643 6.10 1.68 459 2930
0.4 4.00 1.6 0.1287 7.77 1.60 322 2930

1. kmax is the wave number of maximum temporal growth rate ωT
g =

Im(kmaxc).
2. te and Le are the e-folding time and length for the fastest growing temporal
and spatial mode, scaled by h/U0 and h respectively.
3. cg is the group velocity of the mode given by cg = ∂Re(kc)/∂k
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As the active layer crests the topography, the isolating layer increases in thickness,
eventually triggering instability at a certain critical αc ≈ 0.66. Downstream of this
point, the growth rate appears to increase rapidly, growing to order O(10−1) at αc ≈ 0.6.
Thereafter a balance is attained between the increasing and weakening shears at z = 1
and z = 0 leaving the order of the growth rate unchanged. The O(1) e-folding times for
the unstable modes are consistent with the non-linear simulations of Scinocca and Peltier
(1989).

6 Discussion

Recall that Rayleigh’s theorem gives the presence of an inflection point as a necessary
condition for instability in a homogeneous shear flow. The flows examined above are
essentially sheared flows endowed with an inflection point, but in a stably stratified en-
vironment. If shear were the driving mechanism of the instability, then we would expect
stratification to have a stabilizing effect, modifying the unstable shear mode and reducing
its growth rate.

Indeed we found that, for every flow configuration for which an unstable mode was
present, the growth rate for the same shear profile, but without a stable stratification was
larger. This identifies the unstable modes of table 1 as stratified analogues of inflectional
Rayleigh modes, which we refer to as Kelvin-Helmholtz modes.

6.1 Physical interpretation of instability

The wave-interaction theory (see, e.g. Carpenter et al. (2011)) offers qualitative insight
into the destabilizing mechanism at play. The key idea of the theory is that instability
is possible whenever the flow configuration supports two or more waves whose direction
of intrinsic propagation are of opposite signs. Additionally, for a large class of stratified
flows, Baines and Mitsudera (1994) showed that an arbitrarily small region with Ri < 1/4,
flanked on either side by regions where Ri > 1/4 is a sufficient condition for instability.
Such a configuration effectively splits the flow into stable upper and lower waveguides,
with no vertical wave propagation being possible in the central region. Two free modes in
these separated waveguides can then interact to phase-lock and undergo mutual growth.

Figure 4a and 4b display the vorticity gradient and inverse Richardson number curves
at the location α = 0.5. The Ūzz profile is seen to exhibit a large peak at z = 1 correspond-
ing to the nearly discontinuous vorticity interface at the lower branch of the bifurcating
streamline of figure 1. Below this, the values is constant, but reduced in strength and
opposite in sign relative to the interface above. Thus the intrinsic direction of propaga-
tion of vorticity waves in each of these regions is opposite, satisfying one of the necessary
conditions of the wave-interaction theory. The Baines and Mitsudera (1994) condition on
the Ri profiles is also seen to be met.

However, the vorticity profiles exhibit only one distinct extremum; so the view of
the instability as an interaction between two interfacial (or smeared) vorticity waves
breaks down; and it is necessary to include the continuous spectrum in the analysis.
Approximating z = 1 as a discontinuous shear interface, the speed of the rightward
propagating vorticity wave here is given by, to first order

c1 ≈
Ūz|z=1−

2k
(9)
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Figure 4: (a) Vorticity gradient and (b) corresponding inverse Richardon number (Ri−1) profile for the
case α = 0.5 and β = 1.93. The highlighted parts in (b) correspond to sub-quarter Ri regions. As the
dynamically uncoupled layer is taken to be at rest, the vertical coordinate in the Ri−1 plot has been
truncated at z = 2, the top of the isolating layer.

To circumvent the singularity of the 2D Taylor-Goldstein equation, we added a small
amount of viscosity and diffusivity and solved the resulting 6th order equation for the
stable flow profile revealed in the lower waveguide of figure 4b. Free slip and exponential
decay conditions at the upper boundary filter the unstable Tollmien Schlichting waves.
For the case α = 0.5, β = 1.93, we found that at k = 5, there are two modes with speeds
≈ 0.26 which is roughly the same value that was found on applying Eq. 9 and which also
matched the real part of the eigenvalue of the unstable mode that was found by solving
the Taylor Goldstein equation for the complete profile

6.2 Spatial instability using the framework of Gaster (1962)

The discussion thus far has been restricted to temporal modes of instability. We now
explore the spatial stability problem in an attempt to explain actual observed instabilities
in downslope flows. We focus on the so-called signaling problem (Huerre et al. (2000))
which is the response of the flow to a localized periodic (in time) disturbance.

It is perhaps instructive to picture a curve of marginal stability (CMS),

ω = f(k, α, β) (10)

for this problem, with ω being real valued on one side of the curve and complex on the
other. As noted in section 5, the upstream flow, with α = 1, β = 0 has Rimin > 1/4,
and the is thus stable. As the flowing layer begins to accelerate , Rimin eventually drops
below 1/4 allowing for the possibility of instability. The first location where a clear
unstable mode is encountered is for α ≈ 0.66. It may thus be surmised that the point
(k, α, β) = (4, 0.66, 0.89) in parameter space is close to the CMS for the flow. This in turn
allows us to use Gaster’s (1962) result that relates the growth rate of an unstable spatial
mode to the corresponding temporal mode as,

ksg = −ωTg /cg, (11)

where

cg =
∂ωr
∂k

=
∂ Re(kcr)

∂k
(12)

is the group velocity of the temporal instability mode, which we compute numerically.
Though strictly speaking, we have only argued that the first upstream unstable mode is
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Figure 5: (Winters (2016)) Isopycnals and vorticity from a statistically steady non-linear simulation of
stratified flow over a smooth topography matching the optimal upstream solution of Winters and Armi
(2014). The top frame displays the time and cross-stream averaged flow (left) and an instantaneous
snapshot (right). The bottom panel shows three snapshots of the flow spaced about half a buoyancy
period apart and highlights the region 0.5 ≤ h/H ≤ 0.6, where finite amplitude repeated overturning and
plunging of the lower isopycnals (coloured green for visualization purposes) is visible. The red and blue
colours indicate positive and negative vorticity extrema respectively.

close to the CMS, we use Eq. (11) to approximate the spatial growth rate at locations
further downstream as well.

In table 1 we found the group velocity to be non-zero and positive in all cases, estab-
lishing them as convective modes. Thus we can define an e-folding length, Le = cg/ω

T
g

which is the distance by which a growing mode propagates downstream as it undergoes
amplification by a factor of e. The finite amplitude manifestation of instability typically
occurs at a downstream position that is of the order of a few e-folding lengths.

6.3 Evolution to finite amplitude

If we define the horizontal length scale for the flow, Lx � H as the distance over which the
flowing layer height changes by 10%, then an interesting question is, at what downstream
location can we expect to observe finite amplitude structures associated with the unstable
spatial mode. An examination of the e-folding scales in table 1 suggests that even when
the flow is ‘just’ hydrostatic with Lx/H ≈ 10, the most upstream mode at α = 0.66 with
Le = 4.05h will have sufficient downstream distance to grow to exp 10/2.48 ≈ 42 times its
initial magnitude before the background profile changes significantly at α ≈ 0.56. Thus
we may expect to see finite amplitude K-H billows in the region 0.56 ≤ α ≤ 0.66

Recent work by Winters (2016) seems to corroborate this. Figure 5 shows the isopyc-
nals from a statistically steady, 3D simulation of stratified flow over topography matching
the optimal upstream solution of Winters and Armi (2014). The flow is seen to exhibit
instability along the upper edge of the flowing layer, with finite amplitude repeated over-
turning and plunging billows manifesting within the shaded region 0.5 ≤ h/H ≤ 0.6.
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7 Conclusion

We have analyzed the linear stability of stratified flow profiles that match the theoretical
downslope flow solutions of Winters and Armi (2014). We believe that it is the formal in-
clusion of the isolating layer into the stability analysis that is responsible for the dramatic
improvement in the prediction of linear stability theory. The wave-interaction interpreta-
tion of shear flow instability appears to offer a satisfactory explanation for the observed
instabilities. Further, for the spatial stability problem, applying Gaster’s (1962) result
is shown to yield O(1) e-folding length scales which signal transition to non-linearity
at downstream distances consistent with those reported in observations and numerical
simulations of downslope flows.
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