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Abstract
Steep topography on the ocean bottom, when underneath an oscillating tide, is not only
associated with significant internal wave generation at the tidal frequency but also non-
linear flow features, large overturns and turbulent flow. Here, we investigate the internal
wave dynamics and turbulence at an isolated steep obstacle using a three-dimensional,
high-resolution large eddy simulation (LES). An obstacle with a smoothed triangular
shape having a supercritical slope above a critical slope is considered as a laboratory-
scale model of a two-dimensional ocean ridge. Downslope jets with intensified velocity
from in the supercritical region. Later on, during the flow reversal phase, this jet en-
counters upward flow and creates a rebounding jet that distorts the density isopycnals
as well as a transient lee wave above the obstacle. Primary mechanisms responsible for
turbulence are shear in the jet and convective instabilities arising from steepened isopy-
cnals followed by wave breaking. There is also turbulence generation from resonance in
the near-critical boundary flow.

1 Introduction

Oscillating barotropic flow of a density stratified fluid over bottom topography is respon-
sible for the generation of internal gravity waves. A fraction of the energy converted
from the oscillating tide to the baroclinic wave field dissipates through turbulence in the
vicinity of the topography and this fraction can be significant. The fractional energy loss
depends strongly on the topographic geometry, the stratification and the amplitude of
the oscillatory forcing. Steep submarine topography not only enhances the generation
of topographic internal waves, but also presents a site for intensified local turbulence as
found in observational studies at the Hawaiian Ridge (Rudnick and Co-authors, 2003)
and Luzon Strait(Alford and Co-authors, 2015).

Numerical simulations show nonlinear flow features at large obstacles (Klymak et al.,
2008) with low value of excursion number, Ex, as well as small obstacles with O(1) values
of Ex (Jalali et al., 2014). Consider a barotropic tide that oscillates with frequency Ω
and whose velocity has amplitude U0. The excursion number defined by Ex = U0/Ωl is
the ratio of fluid displacement during a cycle of the barotropic tide to the topographic
length scale, l. Nonlinear effects are possible when the value of excursion number is O(1),
based on the dynamically relevant velocity and length scales. For small obstacles, Ex
is dynamically relevant but for tall obstacles (Fr = U0/Nh << 1) an inner excursion
number is dynamically relevant (Winters and Armi, 2013). N is a characteristic value
of the background buoyancy frequency and h is a characteristic height. Because of the
difference between wave-driven turbulence and boundary layer turbulence, the magnitudes
of mixing and dissipation are not well captured by standard parameterizations such as
Mellor and Yamada (1982).
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Steep topography can be identified with the criticality parameter, ε = tan β/ tan θ, which
is the ratio of the topographic slope angle, tan β, to the characteristic wave propaga-
tion angle tan θ =

√
(Ω2 − f 2)/(N2 − Ω2). Supercritical slopes (ε > 1) and near-critical

slopes (ε ' 1) have local turbulence. Legg and Klymak (2008) identified transient hy-
draulic jump-like features that occur during the maximum barotropic velocity phase and
overturned isopycnals in the flow reversal phase for supercritical topography. This behav-
ior is analogous to breaking lee waves in steady flow over obstacles. Recent observations
by Alford et al. (2014) at a transect across the Kaena Ridge present evidence for lee wave
formation and breaking at supercritical topography. Lee wave breaking has also been
observed in Luzon Strait by Alford and Co-authors (2015) and in numerical simulations
of Buijsman et al. (2012); Jalali and Sarkar (2014); Jalali et al. (2015).

Critical slopes with ε ≈ 1 have substantial near-bottom intensification of velocity owing
to resonance in the baroclinic response. When Res is low, there is a laminar boundary
layer (Gostiaux and Dauxois, 2007; Zhang et al., 2008) while, at high Res (Res > 100),
there is a thickened boundary layer with cyclical overturns (Gayen and Sarkar, 2010; Lim
et al., 2010) and turbulence. Here, Res is the Reynolds number based on the Stokes
boundary layer thickness.

Sites like Luzon Strait have near-critical (ε ≈ 1) regions at the hillside as well as su-
percritical slope angle near the hilltop. This motivates the present three-dimensional,
high-resolution large eddy simulation (LES) to study flow over a simplified model of real
topographies with variable steepness. The key nondimensional parameters, except for the
Reynolds number, are similar between the model and oceanic sites, including: the slope
criticality, the Froude number, the excursion number, the ratio of topography height, ho,
to width, lo, and the ratio of topographic height to the depth of the ocean, H. The baro-
clinic response in this simplified model will help better understand processes at realistic
ocean topography.

2 Formulation and Framework

2.1 Governing Equations

The Navier-Stokes equations listed below are numerically solved using LES in a body
conforming grid and under the Boussinesq approximation in a non-rotating environment:

∇ · u = 0 (1a)

Du

Dt
= −∇p∗ + Fb(t)i +

1

Re
∇2u−Bρ∗k−∇ · τ (1b)

Dρ∗

Dt
=

1

Re Pr
∇2ρ∗ + w

dρb

dz
−∇ · λ . (1c)

Here, u, v, and w denote velocity in streamwise (x), spanwise (y), and vertical (z) di-
rections, respectively. Bold letters stand for vector/tensor variables. ν is the molecular
viscosity, κ is the thermal diffusivity, and ρ is the density.

The non-dimensional parameters are the Reynolds number Re ≡ lexU0

ν
=

U2
0

Ων
, buoyancy

parameter B ≡ −g dρ
b
d

dzd
|∞ 1

ρ0Ω2 = N2

Ω2 , and Prandtl number Pr ≡ ν
κ
. Here, p∗ and ρ∗

stand for the deviation from the background pressure and density, respectively. Fb is a
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barotropic forcing term. In this equation, τ is the subgrid-scale (SGS) stress tensor and
λ is the SGS density flux. The popular dynamic Smagorinsky model (Zang et al., 1993)
is used to calculate the SGS stress tensor and the SGS density flux.

2.2 Problem Setup

An oscillating tide over a two dimensional obstacle, Figure 1, is studied using a fully non-
linear, three-dimensional simulation. Background thermal stratification with a constant
buoyancy frequency, N , is considered while the bottom surface is assumed adiabatic. The
background barotropic current, U(x)sin(φ) where φ is the tidal phase, is forced by an
imposed horizontal pressure gradient. Table 1 gives the key parameters of the simulations.

A laboratory-scale model is used to achieve sufficient resolution for the turbulent features
at the slope as well as off-slope lee wave breaking. Both horizontal and vertical length
scales are decreased 100 times compared to oceanic examples. Approximately 25% of the
topographic width has near-critical slope. The critical regions are placed on the flanks
close to the flat bottom between x = ±64m and x = ±44m. The supercritical region is
closer to the hill crest between x = ±36m and x = ±16m covering 25% of the horizontal
length of topography, as shown in Figure 1. Supercritical slope angle is β2 = 14.68◦

compared to the near-critical slope angle of β1 = 7.34◦.

Figure 1: The body fitted computational domain, the grid has been shown partially with one of every
three horizontal and vertical grid points.

Table 1: Key dimensional and nondimensional parameters of the simulation. The domain has streamwise
length, Lx = 50 m, height, Lz = 35 m, and spanwise length, Ly = 15 m. Topography length, L0 = 2l, is
160 m and height, h0, is 12.32 m. The critical angle is β1 = θ = 7.34◦ while the supercritical slope angle
is β2 = 14.68◦ and the tidal frequency is Ω = 0.01406 s−1.

U0[ms−1] ν[m2s−1] N2[s−2] Ex ε1 ε2 Re Fr Ny Nz Nx

0.1 5e-5 0.0121 0.09 2 1 17781 0.073 64 257 1281
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3 Baroclinic Response

Figure 2: Snapshots of zonal velocity and density isopycnals at different phases of the tidal cycle: (a)
maximum barotropic velocity (φ = π/2) (b) φ = π/4, and (c) reversal of the barotropic tide through the
zero velocity point (φ = 0). The red line passes through crests of a transient lee wave.

The flow exhibits internal wave beams, intensified boundary flow and tall overturns.
Figure 2 compares the baroclinic response at different phases of barotropic velocity. Figure
2 (a) depicts the zonal velocity at the phase φ = π/2 with maximum positive (rightward)
velocity. The upward propagation of the fundamental wave beams as well as harmonics
and interharmonics are evident in the baroclinic response above the obstacle. The beams
become less distinct and more asymmetric with increasing Ex as discussed in Jalali et al.
(2016). There are also two beams traveling downwards from the supercritical region. The
maximum velocity at the obstacle peak is substantially larger than the barotropic velocity,
approximately by a factor of 3. The intensified velocity also extends a short distance down
the right (lee) flank. That feature is the initiation of an intense downslope jet which is
clearly visible in panel (b) at the phase φ = π/4. Formation of the downslope jet in the
lee of an obstacle is a signature of supercritical obstacles.

Figure 2 (c) depicts the flow dynamics at the zero-velocity phase (φ = π). At this point,
the barotropic velocity reverses from positive to negative. The jet continues to have
downward momentum owing to fluid inertia and collides with the baroclinic flow that
travels upslope from below, and this interaction creates a rebounding jet perpendicular to
the slope of the topography. The lee wave above the rebounding jet leads to overturned
isopycnals. The phase line in red that passes through crests of the lee wave is observed
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to make an angle of αobs = 15.65◦ with the horizontal. The inner length scale, lin, of the
topography is relevant to lee wave generation, not the entire obstacle length. The inner
length scale is estimated by the point at which the jet rebounds from the obstacle leading
to lin = 21 m. According to the linear theory of lee wave generation,

αth = sin−1 U0k

N
= sin−1 U02π

linN
(2)

Equation (2) leads to the linear theory estimate of αth = 15.75◦ which is close to the
observed value of 15.65◦.

4 Turbulence Mechanisms

Figure 3: Snapshots of logarithmic-scale contours of turbulence kinetic energy(TKE) with the density
isopycnals at different phases of: (a) φ = π/2 (b) φ = π/4 (c) φ = 0 and (d) φ == π/4.

The previous section discussed the evolution of the downslope jet and lee wave. Figure 3
shows the corresponding turbulent kinetic energy (TKE) contours in log scale at different
phases of a half-cycle. Panel (a) shows the intensified flow that propagates as a downslope
jet generates boundary layer turbulence due to its shear. Panel (b) displays the progression
of the jet has depressed the isopycnals at the slope which then rebound to form a weakly
stratified region corresponding to incipient wave breaking. A tall patch of TKE is present
in this weakly stratified region. Panel (c) shows that, as the tidal velocity relaxes towards
zero, the wave grows and breaks. The resulting patch of TKE is then advected over the
topography by the barotropic flow and the baroclininc velocity of the wave beams as
shown in panel (d).

The two significant contributors to turbulence in this problem are shear in the downslope
jet and the convective instability of nonlinearly evolving lee waves. However, there are
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also other contributors present in this setting, though not as significant. For example,
the baroclinic response at the near-critical slope leads to resonance and intensification of
the near-bottom velocity. As a result, turbulence at the critical region can be seen on
the right side flank at φ = −π/4; however it is not as prominent as in Gayen and Sarkar
(2010); Jalali et al. (2014) where the critical slope region was adjacent to subcritical slopes
allowing resonant generation of strong internal wave beams that propagated away. In the
present problem, the strong baroclinic response at the adjacent supercritical region and
the downward internal wave beams from the critical points at the top of the ridge restrict
the velocity intensification at the critical slope. Therefore, critical-slope turbulence is less
prominent in the present problem. Additional contributors to TKE in the simulation are
turbulence patches that develop due to the shear in the superharmonics and downward
beams as well as when the downward beam interacts with the bottom boundary.

5 Conclusion

An accurate numerical simulation of an isolated model ridge with both critical and super-
critical slope has helped understand turbulent processes operative at steep topography
in the deep ocean. Several mechanisms are found to be responsible for turbulence near
the ridge top, including downslope jets and breaking lee waves during flow reversal. We
also find contributions to TKE from critical slope boundary layers, internal wave beams,
superharmonics and downward beams. We note that the present simulation is a specific
geometry and, therefore, further investigation is necessary to examine different geometries
of the model ridge.
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