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Abstract
Turbulence generated by breaking internal waves is an important source of mixing in
the ocean interior, and is often interpreted in terms of the stability of the vertical shear.
However, observations and numerical studies suggest that vertical internal wave strain may
also play a key role in stratified flow stability. Here we model the effects of wave strain by
imposing a spatially- and temporally-periodic standing wave onto a stably-stratified shear
flow. To examine the linear stability of this flow, we compute optimal perturbations for a
range of target times, wave amplitudes, and stratifications. The standing wave catalyzes
perturbation growth in the shear layer, leading to enhanced energy gains. We then perform
direct numerical simulations to examine the nonlinear perturbation evolution. We find
that in some cases the linear growth is sufficient to trigger nonlinear effects and transition
to turbulence. The mixing efficiency varies in time with the background wave, suggesting
that the phase of the flow may be an important parameter in describing the mixing.

1 Introduction

Vertical mixing in the stably-stratified ocean interior is thought to be a key player in
setting the vertical density structure and distributions of tracers which are important for
climate and biogeochemical cycles. However, the turbulent eddies responsible for mixing
are typically on the order of several meters in size, and are unresolved in ocean circulation
models. Parameterizations of the physics leading to mixing are therefore required.

Mixing is often assumed to arise in the ocean interior as the result of shear instabilities.
The Miles-Howard theorem states that, for parallel, steady, inviscid stratified shear flows,
a necessary condition for instability is that the gradient Richardson number be less than
1/4 somewhere in the domain. This concept has been used as the basis of several mixing
parameterizations (e.g. Mellor and Yamada, 1982; Price et al., 1986). Theoretical and
numerical work has suggested other linear mechanisms by which perturbations may grow
and lead to mixing in linearly stable flows (Farrell and Ioannou, 1993; Kaminski et al.,
2014). Additionally, and perhaps more relevant to the question of ocean mixing, is the
fact that geophysical flows are rarely parallel and steady – assumptions which are key in
the Miles-Howard theorem.

Oceanic observations of overturns and dissipation suggest that shear and gradient
Richardson number alone may not be the entire story in determining regions of enhanced
mixing. Increasingly, there is evidence that vertical strain, γ (the normalized distance be-
tween adjacent isopycnals), and the vertical strain rate, 1/γ ∂γ/∂t ≈ ∂w/∂z, may also play
an important role in mixing events (Alford and Pinkel, 2000; Aucan et al., 2006; Levine
and Boyd, 2006). In addition to oceanic observations, there is numerical evidence for
mixing induced by vertical strain in stratified flows. For example, in their numerical sim-
ulations of stratified turbulence forced by large-scale standing internal waves, Carnevale
et al. (2001) observe the development of small-scale vertical “spouts” in regions of strong
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straining motion. The growth and subsequent collapse of these spouts lead to local zones
of mixed fluid.

This past work points to internal wave strain being important for the dynamics of
stably-stratified shear flows and motivates the current research. As in Carnevale et al.
(2001), we consider the stability of a stratified flow forced by a standing internal wave,
but here we include a parallel hyperbolic-tangent shear flow. To examine the stability of
this flow we consider both the linear stability by identifying the structures which grow
the most over finite time horizons, and the resulting nonlinear behaviour and mixing by
performing full direct numerical simulations of the computed perturbations. We focus
primarily on the behaviour of the shear layer, rather than the large-scale standing wave
as seen in Carnevale et al. (2001). By considering this idealized but still spatially- and
temporally-varying flow, we hope to identify the most relevant physical processes, which
may then be useful in developing future parameterizations of ocean mixing.

2 Problem setup and implementation

We begin with a hyperbolic-tangent shear profile and uniform background stratification,
given in dimensional form by U∗(z∗) = U∗0 [tanh (z∗/h∗ − L∗z/2h∗)] and B∗(z∗) = N∗20 z

∗.
We nondimensionalize lengths by h∗, times by h∗/U∗0 , velocities by U∗0 , and buoyancy by
N∗20 h

∗. The nondimensional shear profile is then Us(z) = tanh (z − Lz/2). We also define
the Reynolds, Prandtl, and bulk Richardson numbers for this flow as Re = U∗0h

∗/ν∗,
Pr = ν∗/κ∗, and Rib = N∗20 h

∗2/U∗20 , respectively, where ν∗ and κ∗ are the viscosity and
diffusivity of the fluid.

We model the effect of internal wave strain by defining an inviscid, non-diffusive stand-
ing internal wave acting in the yz-plane using second-order expressions based on those
given by Thorpe (1968),

U(y, z, t) =Us − AU ′s sin kzwz cosωt cos kywy +
A2kzw

8
U ′s sin 2kzwz(1 + cos 2ωt)

+
A2

8
U ′′s sin2 kzwz(1 + cos 2ωt− (1− cos 2ωt) cos 2kywy) , (1)

V (y, z, t) =
Aωkzw
kyw

sin(ωt+ φ) sin kywy cos kz,w , (2)

W (y, z, t) =− Aω sin(ωt+ φ) cos kywy sin kzwz , (3)

B(y, z, t) =z − A sin kzwz cosωt cos kywy +
A2kzw

8
sin 2kzwz(1 + cos 2ωt) . (4)

where A is a wave amplitude (normalized by h∗) and kyw = 2π/Ly and kzw = 2π/Lz

are the horizontal and vertical wavenumbers of the wave, respectively. Primes denote
d/dz. The natural internal wave frequency ω, given kyw and kzw, is defined by ω/

√
Rib =

kyw/
√
k2yw + k2zw. The expressions given above for the standing wave are expected to be

valid in the limit where Akzw � 1 (Thorpe, 1968).
The combination of the standing wave and the shear flow leads to a base flow that

varies in both space and time in all three components of velocity U(y, z, t) and buoy-
ancy B(y, z, t), as illustrated schematically in figure 1(a). The standing wave alternately
compresses and expands both the isopycnals and background shear in the yz-plane, lead-
ing to lower values of the local gradient Richardson number in the compressed regions
(and increased values in the expanded regions). This occurs despite the locally-stronger
stratification as a result of the corresponding strengthening of the local shear.
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Figure 1(b) shows the minimum gradient Richardson number of the background flow
as a function of A and Rib. It is clear that stronger background standing waves lead to
a lower Rig,min for the flow, and in some cases may decrease Rig,min below the critical
value of 1/4 predicted by the Miles-Howard theorem (Miles, 1961; Howard, 1961). (Note,
however, that the base flow considered here is neither parallel nor steady, thus calling into
question the applicability of the Miles-Howard result).
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Figure 1: (a) Schematic of background flow. Arrows denote velocities and contours denote buoyancy. (b)
Minimum gradient Richardson numbers attained by the background flow defined by (1)-(4) as a function
of the wave amplitude A and bulk Richardson number Rib.

3 Linear results

To examine the stability of the base flow given by equations (1)-(4), we seek the linear
optimal perturbations, i.e. the initial conditions u0 and b0 which maximize the linear
perturbation energy gain for a given target time T . The gain is defined by

G(T ) =
1
2
(〈u(T ),u(T )〉+Rib〈b(T ), b(T )〉)

1
2
(〈u0,u0〉+Rib〈b0, b0〉)

, (5)

where u is the perturbation velocity, b is the perturbation buoyancy, and the angle brackets
define the inner product 〈f ,g〉 = 1/V

∫
V
f · g dV . We apply the direct-adjoint looping

approach in order to solve for the optimal perturbations (described in Kaminski et al.
(2014) and Kaminski (2016)), which allows for consideration of complicated base flows
and does not rely on any assumption of slow variation of properties in time or space.

We calculate linear optimal perturbations for three bulk Richardson numbers (Rib =
0.30, 0.40, and 0.50) and five wave amplitudes (A = 0.50, 1.50, 2.50, and 3.50, as well as
the case with no wave, A = 0.00). For these choices of A and Rib, Rig,min is less than 1/4
for A > 1.50 when Rib = 0.30 and for A > 2.50 when Rib = 0.40 as shown by figure 1(b).
Four target times are considered, corresponding to half, one, one and a half, and two
periods of the background standing wave (i.e. T = π/ω, 2π/ω, 3π/ω, and 4π/ω for each
value of Rib). The initial background flow corresponds to the time of maximum isopycnal
deflection. The domain size is (Lx, Ly, Lz) = (20.0, 30.0, 30.0), and the standing wave has
kyw = kzw = 2π/30.0 (i.e. an aspect ratio of one). For simplicity, we keep the Reynolds
and Prandtl numbers fixed at Re = 1000 and Pr = 1, respectively.

The vertical velocities of the optimal perturbations corresponding to Rib = 0.40 and
A = 1.50 are shown in figure 2 for T = π/ω and T = 2π/ω. Also shown for comparison
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is the optimal perturbation for the same target times with A = 0.00. The primary
effect of the standing wave on the structure of the optimal perturbation is to localize it
in the y-direction in regions of high vertical strain rate, as shown by figures 2(b) and
(d). In particular, the perturbations localize such that they benefit from the effects
of vertical compressive strain during their evolution, as discussed below. Within the
localized region, the structure of the optimal perturbations in the xz-plane is similar to
that of the perturbations for the shear layer alone, namely a series of rolls tilted against
the background shear flow as required for energy growth via the Orr mechanism (Orr,
1907).

(a) (d)(b) (c)

xy
z

Figure 2: Structure of computed linear optimal perturbations for short target times. The colours denote
the perturbation vertical velocities, and the isosurfaces show the background buoyancy field. (a) A = 0.00
and T = π/ω. (b) A = 1.50 and T = π/ω. (c) A = 0.00 and T = 2π/ω. (d) A = 1.50 and T = 2π/ω.
Rib = 0.40 for all cases shown here.

Figure 3 shows the computed optimal mean growth rate σm(T ) = lnG(T )/2T . The
perturbation energy growth may be substantially increased in the presence of standing
waves compared to the unstrained case (A = 0.00). At longer times, the mean growth
rates plateau as the normal-mode instability associated with the standing wave dominates
(Bouruet-Aubertot et al., 1995), but much higher mean growth rates σm(T ) are found at
shorter times. This is in agreement with the observation in Kaminski et al. (2014) where
perturbations to base flows that allowed for Kelvin-Helmholtz instability still attained
higher growth rates than the predicted normal-mode growth rates at shorter T . It is
worth noting that the O(0.1) growth rates are of the same order as the background forcing
frequency (where ω ∼ 0.4 − 0.5), indicating that the perturbations evolve on a similar
timescale to the variation of the background flow. Thus, the frozen-in-time approach
commonly used in linear stability analysis would not have been justified here.

By examining the details of the perturbation energy budget (not presented here), it can
be shown that the enhanced linear perturbation energy gain arises due to an enhancement
of the existing shear-based transient growth mechanism for unstrained flows (Kaminski
et al., 2014). That is, the vertical internal wave strain acts to catalyze perturbation
growth via shear.

4 Nonlinear results

Given the significant linear perturbation energy gain, it is natural to ask whether the
optimal perturbations computed in the previous section would be susceptible to non-
linear effects. To examine this question, we carry out direct numerical simulations by
solving the full Boussinesq Navier-Stokes and buoyancy conservation equations govern-
ing the evolution of perturbations u and b for a prescribed background flow U and B.
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Figure 3: Mean perturbation growth rate, σm(T ), as a function of target time T and standing wave
amplitude A. (a) Rib = 0.30. (b) Rib = 0.40. (c) Rib = 0.50.

The governing equations are solved in the framework of DIABLO (Taylor, 2008). The
horizontal directions are periodic in space and treated pseudospectrally, while the verti-
cal direction employs a second-order finite-difference discretization. The vertical grid is
clustered around the centre of the shear layer. At the top and bottom of the domain, a
sponge layer is used to mimic open boundaries.

The linear optimal perturbations corresponding to a target times of half and one
forcing period are used as initial conditions for the simulations. The initial perturbation
amplitude set to E0 = 5×10−6 for all simulations, and random noise with an amplitude of
1/10 of E0 is superposed onto the initial perturbation. We consider cases with A = 1.50
and Rib = 0.30, 0.40, and 0.50 and an additional case with A = 2.50 and Rib = 0.40. The
details of the simulations are summarized in table 1.

Table 1: Details of direct numerical simulations run with and without an added background standing
wave.

A Rib T (Nx, N,Nz)
0.00 0.30 π/ω, 2π/ω (256,256,201), (256,256,201)
0.00 0.40 π/ω, 2π/ω (256,256,201), (192,192,201)
0.00 0.50 π/ω, 2π/ω (192,192,201), (192,192,201)
1.50 0.30 π/ω, 2π/ω (384,384,301), (384,384,301)
1.50 0.40 π/ω, 2π/ω (384,384,301), (384,384,301)
1.50 0.50 π/ω, 2π/ω (256,256,201), (256,256,201)
2.50 0.40 2π/ω (384,384,301)

In some cases the optimal perturbations lead to strong nonlinearity and the devel-
opment of secondary instabilities. For example, figure 4 shows an isosurface of constant
buoyancy passing through the centre of the shear layer for Rib = 0.30, A = 1.50, and a
perturbation computed for a target time T = π/ω. The perturbation is first tilted upward
by the background shear and forms an array of billows in the direction of the background
shear. Eventually, a spanwise secondary instability develops on the billows and the billow
begins to break down to smaller scales. This leads to the development of a turbulent
region which is confined in the y-direction, and which eventually decays at longer times.

The total nonlinear perturbation energy evolution with respect to time, E(t) = 〈u,u〉+
Rib〈b, b〉, is shown by the dashed lines in figure 5(c) for A = 0.00, A = 1.50, and A = 2.50,
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Figure 4: Isosurface of total buoyancy, B+b, passing through the centre of the shear layer. The simulation
shown has Rib = 0.30, A = 1.50, with an initial perturbation corresponding to a target time of π/ω.
The aspect ratio has been stretched by a factor of two in the vertical to better show the details of the
perturbation evolution.

a target time of one forcing period, and Rib = 0.40. Figure 5(c) also shows the correspond-
ing energy evolution in the case where the perturbation is unaffected by nonlinearity (solid
lines). The initial perturbation energy evolution follows closely the linear evolution, indi-
cating that the energy growth at early times corresponds to the linear non-normal growth
described in the previous section. Later, the nonlinear energy evolution deviates from the
linear prediction. Eventually, the growth saturates at a peak value less than the theo-
retical linear energy maximum. This saturation is more apparent in the flows where the
perturbation experiences higher energy gain (A = 1.50 and especially A = 2.50). This
may be a function of the larger gains experienced by the perturbations in the presence
of the background standing wave, but may also be an effect of the localization of the
perturbation: for a given initial energy amplitude, the associated perturbation velocities
u and buoyancy b are expected to be larger than in the case where the perturbation fills
the entirety of the shear layer (see figure 2).

As mentioned in the introduction, a key quantity of interest in stratified shear flows
is the mixing. Here, we quantify the efficiency of mixing by comparing the amount of
energy used in dissipating potential energy to the total amount of dissipation in the flow,
η = εp/(εk + εp), where εk and εp are the dissipation of kinetic and potential energy
respectively, defined as

εk =
1

V

∫
V

1

Re

∂ui
∂xj

∂ui
∂xj

dV and εp =
1

V

∫
V

Rib
RePr

∂b

∂xj

∂b

∂xj
dV . (6)

Figure 5(d) shows the time evolution of the mixing efficiency, η(t), for a background
flow with no standing wave (A = 0.00) and one with a standing wave with A = 2.50.
For both cases, there is an initial decrease due to the decay of the additive noise. This
is followed by a period of strong increase in mixing efficiency up to values as high as
approximately 0.65 as the perturbation grows, similar to the observed evolution of mixing
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Figure 5: (a),(c) Background vertical strain rate, ∂W/∂z, through the centre of the perturbation (y =
Ly/2, z = Lz/2). (b) Time evolution of total perturbation energy E(t) for linear (solid) and nonlinear
(dashed) simulations. The blue lines correspond to A = 0.00, the red lines to A = 1.50, and the green
lines to A = 2.50. (d) Time evolution of mixing efficiency, η(t), for A = 0.00 and A = 2.50. The cases
shown have Rib = 0.40 and T = 2π/ω.

efficiency for Kelvin-Helmholtz instability (Peltier and Caulfield, 2003). As the perturba-
tions continue to evolve, the mixing efficiency decreases to a value of approximately 0.3.
However, the influence of the background flow is apparent, with increasing mixing effi-
ciency during times of compressive vertical strain rate (∂W/∂z < 0). This is in contrast
to the unstrained flow for which the mixing efficiency is tending towards a constant value
after the initial transient evolution.

5 Conclusions

Here we have computed the linear optimal perturbations corresponding to a base flow
consisting of a parallel, steady stratified shear flow interacting with a large-scale standing
internal wave, based on the expressions given by Thorpe (1968). The straining flow
associated with the internal wave acts to alternately compress and expand the shear
layer, modifying the shear and stratification in space and in time.

Over time horizons of the order of one wave period, the added standing wave in-
creases the maximum perturbation energy gain by up to an order of magnitude, with
higher increases observed for larger-amplitude waves. In contrast to the optimal pertur-
bations computed for the stratified shear layer alone, the perturbations to the strained
flow localize in regions of high-amplitude vertical strain rate, ∂W/∂z. In the presence
of compressive strain (∂W/∂z < 0), the growth of perturbation energy via vertical shear
production is enhanced, leading to higher perturbation energy growth via the shear-based
Orr mechanism. At longer target times, there is a shift in the growth mechanism favoured
by the optimal perturbations to the normal-mode instability of the standing wave.

We have also performed complementary direct numerical simulations, initialized by
giving the computed optimal perturbations a small but finite initial amplitude. The
perturbations grow linearly before saturating at larger amplitudes. The energy growth
is sufficient to cause strongly nonlinear effects such as the development of billows, and
for certain parameters the flow transitions to turbulence. Mixing efficiencies vary in time
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with the background straining flow, suggesting that the phase of the turbulent event is
an additional factor in determining the associated mixing efficiency.
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