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Abstract 
A simplified model is developed for intrusive gravity currents propagating along the interface of a two-

layer stratified ambient. The model is based on the conservation of mass and vorticity, and it does not 

require any empirical closure assumptions. A parametric study conducted with this model reproduces the 

correct behavior in various limits, and is consistent with previously reported experimental observations. 

Specifically, it predicts the formation of equilibrium intrusions when the intrusion density equals the 

depth-weighted mean density of the two ambient layers. It furthermore demonstrates the existence of non-

smooth limits under certain conditions. An energy analysis shows that under non-equilibrium conditions 

the intrusion gains energy. The predictions by the parametric study are furthermore compared to two-

dimensional DNS results, and very good agreement is observed with regard to all flow properties. 

 

1. Introduction 
Intrusions represent a special class of gravity currents that propagate horizontally into a stratified ambient 

at intermediate depths. They occur in a variety of atmospheric and oceanic situations, where they can 

influence the dynamics of such flows as sea breeze fronts, river plumes and powder snow avalanches.  

 

 
Fig1. Schematic of an intrusion produced via a lock-release process: a) at the initial state, where all the fluids are 

at rest, b) when the gate is removed and a quasisteady, symmetric intrusion forms and c) when (𝜌𝑙𝑑𝑙 + 𝜌𝑢𝑑𝑢)/𝐻 <
𝜌𝑐 and a quasisteady, non-symmetric intrusion emerges. 
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The most common way to produce the intrusion in the laboratory is via lock-release process. The 

schematic of a lock-release has been sketched by figure 1a. A tank of length 𝐿 and height 𝐻 is divided 

into two compartments by means of a vertical gate. The right compartment is initially filled up to height 

𝑑𝑙 with heavy fluid of density 𝜌𝑙. A lighter fluid layer of density 𝜌𝑢 and thickness 𝑑𝑢 is placed above this 

dense fluid. The left compartment (the ‘lock’) of length 𝐿𝑙𝑜𝑐𝑘 contains fluid of intermediate density 𝜌𝑐, so 

that 𝜌𝑢 < 𝜌𝑐 < 𝜌𝑙. Upon instantaneous removal of the gate, the intermediate density fluid forms a right-

propagating intrusion, while two left-propagating currents emerge as the consequence of return flows. 

This fully describes the schematic of a symmetric or equilibrium intrusion, exhibited by figure 1b, where 

𝜌𝑐 equals average density of ambient fluids, weighted by their depths(𝜌𝑐𝑑𝑙 +  𝜌𝑐𝑑𝑢)/𝐻. As soon as this 

symmetry or equilibrium condition breaks, the non-symmetric or non-equilibrium intrusion will form, 

which gives rise to the leading bore propagating ahead of the intrusion, as well as the substantial 

difference in the velocities of the left-propagating currents. This velocity difference results in the 

generation of another bore, travelling along the interface of the faster left-propagating current, always at 

the same streamwise location as the slower one. Figure 1c represents this dynamics.  

 

Various theoretical models have been proposed to predict the features of the intrusions, such 

as their thickness and front velocity ([1], [2], [3], [4]). Unanimously, all these earlier models are 

based on some form of empirical energy assumptions, e.g. they may assume zero-headloss along 

certain streamlines, while they employ mass and horizontal momentum conservation equations 

([1], [2], [4]), or they consider non-dissipative conversion of all the available potential energy to 

kinetic energy of the intrusion and return flows, in the absence of mixing ([3]). In the present 

investigation, we aim to avoid such empirical assumptions, by using horizontal and vertical 

momentum conservation simultaneously in the form of vorticity equations, in addition to the 

mass conservation equations. It allows us to analyze the energetics of the flow a posteriori.  

 

2. Theory & simulations 
The simultaneous application of the mass and vorticity conservation equations on the symmetric and non-

symmetric configurations shown in figure 1b and 1c, respectively, and for the separate control volumes 

exhibited for each configuration, yields the flow variables, particularly gravity current speeds and 

thicknesses, without invoking any empirical assumptions for the closure. The details of the theoretical 

analysis can be found in [5]. The results of the analytical solution can be rendered dimensionless, by 

introducing 𝐻  and √𝑔′𝐻  as the characteristic length and velocity, respectively. Here, 𝑔′ is defined as 

(𝜌𝑙 −  𝜌𝑢)𝑔/𝜌𝑐 . Moreover, a dimensionless density can be formulated as 𝜌∗ = (𝜌 − 𝜌𝑢)/(𝜌𝑙 −  𝜌𝑢) . 

Consequently, the equilibrium condition in the dimensionless form gives 𝜌𝑐
∗ = 𝑑𝑙

∗. 

 

This vorticity model predicts identical velocities for all the gravity currents in the symmetric case, 

where they all equal √𝑑𝑙
∗𝑑𝑢

∗ /2. Furthermore, it shows that the effective depths of each left-propagating 

currents is half the depth of the corresponding layer, i.e. ℎ𝑙
∗ = 𝑑𝑙

∗/2 and ℎ𝑢
∗ = 𝑑𝑢

∗ /2. These results are 

fully consistent with [1], [2], [3] and [4]. For the non-symmetric intrusion, a closed-form solution is not 

attainable, due to the complexity and the nonlinearity of the system of the equations, but a numerical 

solution can be obtained via Newton iteration or other numerical methods.  

 

Toward verifying the validity of the analytical solution, the results obtained by the above theory, were 

compared with the earlier theoretical and experimental data, as well as with the results of two-

dimensional and unsteady Direct Navier-Stokes Simulations (DNS) provided by the in-house code 

TURBINS, which has been described and validated in [6] and [7]. The dynamics of various types of 

intrusions introduced earlier in this paper, are captured in figure 2. Doubly symmetric intrusion refers to 

the special case of symmetric intrusion where 𝜌𝑐 = (𝜌𝑙 +  𝜌𝑢)/2 and 𝑑𝑙 = 𝑑𝑢. In this case, there is a 

complete symmetry with respect to the ambient interface. 



 
Fig 2. Snapshots of the density field of a) a doubly symmetric, b) a symmetric, and c) a non-symmetric 

intrusion, when the numerical solutions have reached the quasisteady state. 

 

 

3. Results 
In the following, we conduct a comprehensive comparison between the present vorticity-based modelling 

and previous experimental or theoretical studies, in addition to the results obtained through DNS.  

 

Fig 3. Phase-space diagrams for a) the intrusion speed, and b) the ratio of leading wave speed to intrusion speed. 

 
Presenting the results of our model in the form of contours and as functions of 𝜌𝑐

∗  and 𝑑𝑙
∗  is 

informative. For instance, figure 2 represents the phase-space diagrams for the intrusion speed, as well as 

the ratio of leading wave speed to intrusion speed for the full range of dimensionless intrusion densities 

and interface heights. The model confirms that for a given intrusion density, equilibrium intrusions have 

the minimum speed. For this reason, in figure 1a, the extrema of all the isolines pass through line 𝜌𝑐
∗ =

𝑑𝑙
∗ . Furthermore, at 𝜌𝑐

∗ = 𝑑𝑙
∗ = 0.5, where the doubly symmetric intrusion forms, the vorticity model 

renders the same prediction as the classical studies on single-layer gravity current such as [8], when the 



tank height equals 𝐻/2. Figure 2b illustrates that for symmetric intrusions 𝑈𝑏
∗/𝑈𝑐

∗ = 2, so that the correct 

linear long wave speed √𝑑𝑙
∗𝑑𝑢

∗  is achieved, which is in agreement with [2] and [4]. It is also noteworthy 

that for the limiting cases, where 𝑑𝑙
∗ approaches 0 or 1, the ratio of intrusion speed to the leading wave 

speed tends to 1, i.e. the intrusion catches up with the leading bore. This is consistent with the fact that for 

these limits, the single-layer gravity current case will be recovered, where we do not expect the 

emergence of any internal bore.  

 

 
Fig 4. Variation of a) the intrusion speed (𝑈𝑐

∗), b) intrusion thickness (ℎ𝑐
∗), c) left-propagating current velocities 

(𝑈𝑙
∗, 𝑈𝑢

∗) and d) left-propagating current heights (ℎ𝑙
∗, ℎ𝑢

∗ ) as functions of 𝑑𝑙
∗, when 𝜌𝑐

∗ is maintained at 0.5. The solid 

lines demonstrate the results of the present study, dashed line exhibits the predictions of [3], dash-dot line displays 

the results presented by [4] and discrete circles and crosses show the DNS results of the present study and the 

experimental data of [3], respectively. Furthermore, the vertical dotted lines in 4a demonstrate the range of validity 

of the investigation by [1]. Within this range, their results (not shown here) agree closely with all other theoretical, 

numerical and experimental data. 

 

The results can also be studied for a fixed value of 𝜌𝑐
∗ , such as those shown in figure 4. For the 

intrusion velocity, figure 4a compares vorticity model predictions with current DNS simulation results, as 



well as with earlier experimental data and theoretical predictions by other authors. Within the present 

investigation, we conducted simulations for 𝑑𝑙
∗ = 0.1, 0.2...0.9, as well as various 𝜌𝑐

∗-values, while only 

those of 𝜌𝑐
∗ = 0.5 are presented here. The figure shows that the vorticity model predictions are close to 

those of the earlier models by [3] and [4], and over a remarkable range of 𝑑𝑙
∗ fall in between these two 

models. Within its narrow range of validity between the vertical dotted lines, the model of [5] yields 

predictions in very close agreement with those of the other models, so that we do not show them in this 

figure. All four models predict that the minimum propagation velocity occurs at equilibrium conditions, 

which is consistent with the experimental observations of [7] and the present simulation results. Due to 

the finite 𝑅𝑒-values employed in the DNS simulations, the DNS front velocity data generally fall slightly 

below the vorticity model predictions. We note that in the limit of 𝑑𝑙
∗ → 𝜌𝑐

∗ , the predictions for the non- 

symmetric case smoothly approach those of the symmetric case for all physical variables. 

 

Figure 4b compares vorticity model predictions with DNS results for ℎ𝑐
∗ as a function of the interface 

height. As shown clearly, the intrusion thickness reaches a minimum value of 0.5 for the equilibrium case. 

Away from the equilibrium point, the intrusion thickens. This can be explained clearly via studying the 

energetics of the flow, as will be seen later.  

 

For the propagation velocities of the upper and lower gravity currents, figure 4c compares the vorticity 

model predictions to the DNS results. Again, good overall agreement is observed, particularly away from 

the limits. The velocity of each gravity current is a function of its available potential energy, which scales 

with the square of the layer height multiplied by its density difference relative to the intrusion fluid. Both 

the model predictions and the DNS results confirm that under equilibrium conditions (𝜌𝑐
∗ = 𝑑𝑙

∗  ) the 

gravity currents have identical front velocities. When 𝑑𝑙
∗ < 𝜌𝑐

∗  , the lower gravity current has less 

available energy than the upper one, so that it travels more slowly. As 𝑑𝑙
∗ increases, the lower gravity 

current speeds up while the upper one slows down, until for 𝜌𝑐
∗ = 𝑑𝑙

∗ the two velocities become equal to 

each other. Beyond this point, the lower gravity current propagates faster than the upper one. We notice 

that for 𝑑𝑙
∗ ≈ 0 or 1 the vorticity model predicts velocity of the faster left-propagating current above 0.6. 

This is much larger than the value of one half for a full-depth lock-exchange gravity current, which 

indicates that the limits of 𝑑𝑙
∗ → 0 and 1 are singular. This singularity may be a consequence of treating 

the interfacial disturbances as a bore, which is no longer valid for these limiting cases. An alternative 

approach could be to model these disturbances as solitary waves, which represents a substantially 

different dynamics from that of a bore. It furthermore suggests that in this limit the lower gravity current 

in the intrusion configuration is gaining energy. 

 

Figure 4d compares the DNS values for the lower and upper current heights with the corresponding 

vorticity model predictions. Again, good agreement between the model predictions and the simulation 

results is observed over the entire range of 𝑑𝑙
∗, for the exhibited values of 𝜌𝑐

∗ . Moreover, as demonstrated 

by this figure, ℎ𝑙
∗ and ℎ𝑢

∗  vary nearly linearly with the interface height, especially far from 𝑑𝑙
∗ = 0 or 𝑑𝑙

∗ = 

1, where the slopes of the curves are close to 0.5 (and -0.5 for ℎ𝑢
∗ ). Recall that for equilibrium intrusions 

we had found ℎ𝑙
∗ = 𝑑𝑙

∗/2 and ℎ𝑢
∗ = 𝑑𝑢

∗ /2. 

 

 

 

 



 
 Fig 3. Phase-space diagram the headloss (Δ𝑐

∗ ) along 𝐵′𝐶′ streamline and within the intrusion. 

 
After obtaining the velocity and thickness of each gravity current theoretically, we can also compute 

the headloss Δ𝑐
∗  along the streamline 𝐵′𝐶′ shown in figure 1c via employing modified Bernoulli’s equation 

between these two points. Pressure is assumed to be hydrostatic at the two ends of this streamline. We 

also note that the headloss is scaled by 𝜌𝑐𝑔′𝐻. Interestingly, it yields zero dissipation for the symmetric 

intrusions, which is consistent with the fact that intrusion occupies half the depth of the tank in these 

cases. This result also agrees well with [8], which shows that an energy-conserving gravity current forms 

only when its thickness is either zero or half the depth of the tank. On the other hand, away from the 

equilibrium condition, Δ𝑐
∗  is always negative, i.e. the intrusion gains energy. This explains the propagation 

of non-equilibrium intrusions with ℎ𝑐 > 𝐻/2. 
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