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Abstract
The dynamics of double-diffusive gravity currents exhibiting the fingering instability were
examined using 2D and 3D simulations of a lock exchange initial configuration. It was
found that although the spreading of the currents was governed by a balance of buoyancy
and turbulent drag forces, currents with more intense fingering spread faster than those
with less intense or no fingering. This was due to an increase in the buoyancy of the
currents with stronger fingering, which had a stronger effect than the increased drag. The
fingering also affected the thickness of the currents, with more fingering corresponding to
thinner currents. We found that in 3D, fluxes were higher than in 2D, so that currents
with the same parameters exhibited the effects of stronger fingering in 3D.

1 Introduction

Recent decades have seen rapid growth in our understanding of the dynamics of single-
component gravity currents (Benjamin, 1968; Linden, 2012), based on laboratory exper-
iments (Huppert and Simpson, 1980), field observations (Huppert (2006) and references
therein), high-resolution numerical simulations (Meiburg et al., 2015), and novel theo-
retical approaches (Borden and Meiburg, 2013). These investigations have elucidated
the dynamical force balances governing the various stages of single-component gravity
current flows, as well as their front velocity, mixing properties and energy budgets. By
comparison, multicomponent gravity currents remain much less well understood, in spite
of their importance in natural settings and engineering applications, such as river plumes,
oceanic overflows and desalination plants. Most of the research on two-component gravity
currents to date has focused on the influence of a particulate phase, and on the role of
particle settling in triggering buoyancy reversal in such flows (Meiburg and Kneller, 2010).
On the other hand, very few investigations have focused on the effects of double-diffusion
on the dynamics of gravity currents driven by temperature and salinity differences.

Double-diffusion is known to give rise to a host of complex dynamical phenomena in
nominally stably stratified thermohaline systems (Radko, 2013). At the most basic level,
a fingering interface forms when the slowly diffusing component is unstably stratified,
while a diffusive interface emerges for an unstable stratification of the faster diffusing
component. The subsequent evolution of the convective flow can produce such interesting
features as collective fingering instabilities, staircases and horizontal intrusions. To date,
double-diffusive convection has primarily been explored for base states in which the fluid
is at rest. On the other hand, for base states in the form of gravity currents, characterized
by sharp fronts, pronounced temperature and salinity gradients, as well as strong shear,
we might expect the evolution of double-diffusive convection to proceed quite differently.
This was confirmed in the laboratory experiments of double diffusive gravity currents by
Maxworthy (1983), who explored the scaling laws and force balances governing both fixed
volume and constant flow rate double-diffusive currents and intrusions.
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Here we summarize some of the key findings, while a more detailed discussion of
double-diffusive gravity currents is presented in Konopliv and Meiburg (2016).

2 Problem Setup

We perform direct numerical simulations of full-depth, double-diffusive lock exchange
gravity currents, as sketched in figure 1. The left half of the domain initially contains
the lighter, hot and salty fluid of density ρ1, whereas the heavier, cold and fresh fluid of
density ρ2 is located on the right. We always refer to the faster diffusing component as
“heat” and the slower diffusing component as “salt.” In dimensionless units, the domain
extends from x = −30 to x = 30, and it has a height of one. When the lock is released,
the lighter fluid forms a buoyant current that propagates towards the right along the top
wall, whereas the denser fluid propagates towards the left along the bottom wall.

Hot, salty, 
light fluid Cold, fresh,

heavy fluid

Figure 1: Sketch of the lock exchange flow under consideration. The left reservoir is initially filled with
light, hot and salty fluid, while the right reservoir contains dense, cold and fresh fluid. Upon removal of
the gate (represented by the dashed line), the hot and salty fluid forms a right-moving buoyant current
along the top wall, while the cold and fresh fluid propagates to the left along the bottom wall. The
interface separating the two currents may be subject to double-diffusive fingering.

We employ the Navier-Stokes equations in the Boussinesq approximation, along with
convection-diffusion equations for heat and salinity. In order to nondimensionalize these
equations, we use the height of the domain h and the buoyancy velocity Ub =

√
g′h, where

g′ = g(ρ2 − ρ1)/ρ0 and ρ0 = (ρ1 + ρ2)/2. The governing dimensionless parameters

Re ≡ Ubh

ν
, PeT ≡

Ubh

kT
, P eS ≡

Ubh

kS
, τ ≡ kS

kT
≡ PeT
PeS

(1)

have the form of a Reynolds and two Peclet numbers. Additionally, it is convenient to
define the diffusivity ratio τ . Here ν denotes the kinematic viscosity of the fluid, while
kT and kS represent the diffusivities of heat and of salt, respectively. An additional
parameter,

Rρ0 =
α∆T

β∆S
, (2)

arises through the initial condition and represents the ratio of the density loadings due to
temperature and salinity.

3 Results

We define the length L(t) of the rightward propagating buoyant top current as the distance
from the gate to the current tip, which is taken as the most advanced location with a
dimensionless temperature of at least 0.05. For a constant initial stability ratio Rρ0 = 1.07,
figure 2a displays the ensemble-averaged current length L(t) as function of τ . Keeping in
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Figure 2: Current length vs. time (a), and current thickness vs. time (b) for Rρ0 = 1.07 with varying
τ . Smaller values of τ , i.e., more strongly double-diffusive currents, result in larger front velocities and
thinner currents. The single-diffusive case corresponds to τ = 1.

mind that τ = 1 corresponds to classical, single-diffusive gravity currents, we find that
strongly double-diffusive currents propagate up to 50% faster than classical currents. We
expect double-diffusion to affect the current velocity via two opposing mechanisms: On
one hand, double-diffusion can increase the density contrast between a current and its
ambient environment, which in turn will increase the current velocity. This is due to the
release of potential energy stored in the salinity field, which drives the fingering. At the
same time, double-diffusive fingering will increase the turbulent drag acting on the current,
which should have a retarding effect. Interestingly, figure 2a indicates that the current
velocity does not vary monotonically with τ . For τ -values slightly less than one, i.e. for
weakly double-diffusive currents, we observe the current length to grow more slowly than
for single-diffusive currents, whereas for strongly double-diffusive currents it grows more
rapidly. This suggests that τ affects the balance between buoyancy and turbulent drag in
a nonlinear fashion.

In order to provide quantitative evidence for the scenario outlined above, we now
discuss the effective density profile of the current. Towards this end, figure 3a displays
vertical ρ-profiles averaged in the streamwise direction from the gate position to the
location half a channel height behind the current front. This figure indicates that the
dimensionless density of the strongly double-diffusive (τ = 1/8) top current can reach
values as low as -1.5 near the upper boundary, far below the left reservoir value of ρ = 0.
Similarly, the current density near the lower wall significantly exceeds the value ρ = 1 in
the right reservoir. The weakly double-diffusive (τ = 2/3) current, on the other hand, loses
heat and salinity at approximately the same rate, so that its effective density varies from
ρ = 1 near the bottom wall to ρ = 0 near the top wall, similar to the single-diffusive gravity
current. This increased buoyancy for the strongly double-diffusive current is consistent
with the results shown in figure 2a, where the strongly double-diffusive gravity current
was seen to propagate much faster than its weakly double-diffusive counterpart. However,
to fully understand the behavior shown in figure 2a, we will also have to consider the
potentially higher drag acting on the strongly double-diffusive current, as a result of the
fingering. We will return to this point further below.

In a top current with strong double-diffusive fingering, fingers transport salt out of the
top current and into the ambient below. This transport of salt results in the formation
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Figure 3: Horizontally averaged ρ-profiles (a), and horizontally averaged u-profiles (b), for simulations
with Rρ0 = 1.07 and τ = 2/3, 1/8 at t = 45. In each frame, the more strongly double-diffusive current
develops a pronounced three-layer structure. Frame (c) shows the u-profile at x = 3 for a simulation with
Rρ0 = 1.07 and τ = 1/8. The right-moving, very dense current next to the bottom wall is clearly visible,
while the left-moving current containing fluid from the right reservoir has been deflected upwards, and
away from the wall.

of a dense pool near the bottom of the gate region. The formation of this pool of high-
density fluid along the bottom wall, which is responsible for the large densities seen in
figure 3a and can also be observed in figure 4, strongly modifies the structure of the flow
field. Since this fluid is significantly denser than the fluid in the right reservoir, it tends
to spread horizontally along the bottom wall in both directions, and below the fluid of the
right reservoir. Consequently, it deflects the left-moving current of right reservoir fluid
upwards and away from the bottom wall. In this fashion, the flow field to the right of the
original gate location acquires an effective three-layer structure, with a right-moving, light
current along the top wall made up of warm and increasingly less salty fluid, a left-moving
intermediate density current in the center of the channel, and a pool of very dense, cold
and salty fluid spreading horizontally along the bottom wall.

This emerging three-layer structure for strongly double-diffusive gravity currents (τ =
1/8) is confirmed by the horizontally averaged u-velocity profiles shown in figure 3b. The
weakly double-diffusive gravity current (τ = 2/3), on the other hand, exhibits a clear
two-layer structure, with a light top current moving to the right, and a dense bottom
current moving to the left. The right-moving, dense current along the bottom wall can be
clearly recognized in the local velocity profile of figure 3c for the strongly double-diffusive
current.

The thickness of the buoyant top current can be defined by a horizontal average of the
location of the current interface, where the current interface is defined as the y-location
above which the horizontal volume flux in the positive x-direction reaches a maximum.
The condition of zero net horizontal volume flux implies that this y-location also maxi-
mizes the horizontal volume flux in the negative x-direction below. For a representative
current with Rρ0 = 1.07 and τ = 1/4, figure 4 shows that the y-position of the interface
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Figure 4: Salinity concentration for a current with Rρ0 = 1.07 and τ = 1/4, at t = 35. The current
interface, evaluated as described in the text, is drawn as a solid line. To obtain effective current properties
such as temperature, salinity and thickness, we average from the gate location to half a channel height
behind the current tip.

remains nearly constant over the length of the current. In order to eliminate artifacts
due to the current front, we take this streamwise average from the gate location to the
position half a channel height behind the current front. We furthermore remark that, due
to the initial transient flow evolution, a meaningful current thickness can be identified
only after t ≈ 5.

Figure 2b displays the current thickness as a function of time for Rρ0 = 1.07 and
various values of τ . During the acceleration phase until t ≈ 15− 20, the current thickness
decreases slightly, whereas subsequently it shows a mild increase as the current decelerates.
While weakly double-diffusive currents have a thickness similar to that of single-diffusive
currents, more strongly double-diffusive currents are seen to be increasingly thinner, as
a result of the transition from a two-layer to a three-layer structure of the flow field, as
described below.

Following the approach of Maxworthy (1983), the turbulent drag due to vertical trans-
port of horizontal momentum as a result of double-diffusive fingering can be estimated in
dimensional terms as

Fdd ∼ ρ0UV L ∼ ρV L
dL

dt
, (3)

where U represents the horizontal velocity scale. The buoyancy force can be estimated
by integrating the hydrostatic pressure difference between an idealized current shape and
the ambient, as shown by Maxworthy (1983)

Fb ∼ ∆ρgh2c . (4)

We obtain the spreading relationship for a current governed by a fingering drag-buoyancy
balance by combining (3) and (4)

ρV L
dL

dt
∼ ∆ρgh2c . (5)

Nondimensionalizing and integrating gives

L̃2 − L̃2
s ∼

∫ t̃

t̃s

γ(t̃′)

Ṽ
dt̃′ , (6)

where t̃s indicates the transition time beyond which (6) first becomes valid, and L̃s repre-
sents the corresponding transition length. This balance corresponds to the one proposed
by Maxworthy (1983), except that here we assume hc to be constant, as discussed in the
previous section, and we employ U ∼ dL/dt instead of U ∼ L/t.

In order to test for this turbulent drag-buoyancy balance, we carried out a long simula-
tion until t = 190 in a large control volume x ∈ [−60, 60], for parameter values Rρ0 = 1.50
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Figure 5: Test for a turbulent drag-buoyancy balance at later times. In the figure, ts = 100 and Ls is
the length of the current at t = ts. The fact that the data forms a straight line through the origin shows
that (6) holds in this time range.

and τ = 1/8, which result in a moderate amount of fingering. Figure 5 plots the two sides
of (6) against each other, with the additional assumption that γ/V does not depend on
time, which holds approximately for this simulation. In order to provide sufficient time
for the transition to the turbulent drag-buoyancy balance to be completed, we choose
ts = 100, with L̃s denoting the current length at t = ts. The agreement of the simu-
lation data with the straight line through the origin in figure 5 confirms the turbulent
drag-buoyancy balance for long times.

All of the simulations discussed up to this point were two-dimensional in nature.
In order to explore the qualitative and quantitative agreement between two- and three-
dimensional flows, we conducted a single three-dimensional run forRρ0 = 1.07 and τ = 1/8
in a smaller domain. A visualization of the salinity isosurfaces at t = 14 is shown in fig-
ure 6. The 3D current exhibited similar characteristics to a 2D current with stronger
fingering than it would have had for the same parameters. This was confirmed by exam-
ining such quantities as current thickness, temperature and salinity and using spanwise-
averaged results to compare with 2D. Our finding that the three-dimensional current
is similar to its two-dimensional counterpart but exhibits stronger fingering is consistent
with results presented in Radko et al. (2015) for flows with stochastic shear. This author’s
work shows that fingering fluxes are larger in unsheared three-dimensional flows as com-
pared to two dimensions, but that fluxes in a sheared three-dimensional environment are
similar to two-dimensional fluxes in an unsheared environment. This is mainly due to the
fact that shear causes three-dimensional fingers to align into salt sheets in the plane of the
shear Linden (1974), since modes with nonzero wavenumber in this direction are damped.
As a result, shear effectively reduces the dimensionality of the fingering from three to
two dimensions, thereby reducing the flux by a factor of 2 to 3 (Radko et al. (2015)).
In two-dimensional gravity currents, the lack of the third dimension prevents any sheets
from forming, and only modes with nonzero wavenumbers in the streamwise direction can
grow. However, these modes will be damped in comparison to three dimensions, so that
fluxes will be lower in the sheared two-dimensional environment. This implies that our
work may have more places to be potentially applicable, since the governing parameters
in nature may not be as favorable to strong fingering as they were in our simulations, but
the presence of a third dimension will enhance double-diffusive fluxes.
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Figure 6: Three-dimensional isosurfaces of the salinity concentration for a 3D double-diffusive current.
From dark to light, the contour values are 0.1, 0.3, 0.5, 0.7 and 0.9.
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