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Abstract
The formation of internal waves from evanescent regions is studied experimentally with
a Gaussian topography and varying natural frequency (N) profiles. When a topography
is encompassed by an evanescent region, where N is less than the imposed excitation
frequency, only evanescent waves are generated. The amplitude of these evanescent waves
decay at an exponential rate while traveling vertically. An evanescent wave can become a
propagating internal wave when it passes through a turning depth where N is equivalent to
the excitation frequency. Two-dimensional experiments are performed with exponentially
varying stratifications to investigate energy transmitted from an evanescent wave to a
propagating internal wave. These experiments focus on how internal wave energy is
influenced by the location of the topography relative to the turning depth and the ratio of
natural frequency near the topography to the excitation frequency. Internal wave energy is
estimated from the experiments using Synthetic Schlieren and compared to linear theory.

1 Introduction

Internal waves play a critical role in understanding oceanic and atmospheric dynamics.
In the ocean, these waves propagate away from their generation sites and can transmit
energy upward from the ocean floor when generated over topography, or downward from
the ocean surface when generated by strong winds at the surface. When internal waves
eventually steepen and break, mixing is induced which helps to maintain healthy oceans
and can affect both weather and climate patterns in the atmosphere [Lighthill (1974),
St. Laurent and Garrett (2002), Nappo (2002), Sutherland (2010)].

Internal waves are formed in stratified fluids where the natural frequency (N) is less than
an excitation frequency. The natural frequency is defined as

N2 = (−g/ρo)(dρ/dz) (1)

where g is the gravity constant, ρo is a reference density and dρ/dz is the change in density
with respect to height where z is positive upward. When an excitation frequency is greater
thanN , the bulk fluid cannot respond to the disturbance and evanescent waves are formed.
Evanescent wave energy is transported vertically, and the amplitude of these waves decay
at an exponential rate. Evanescent waves are often considered to have little impact on the
surrounding fluid because of their large amplitude decay rate [Lighthill (1974), Pedlosky
(2003)]. However, when the excitation frequency is less than the natural frequency (ω <
N), propagating internal waves are generated. These waves propagate away from their
generation sites at an angle α away from the vertical, where ω = Ncos(α). There is little
to no attenuation of the amplitude of internal waves in a constant stratification. Linear
theory indicates that if an evanescent wave travels vertically and reaches a depth where
ω = N , and thereafter ω < N , then the evanescent wave can become a propagating
internal wave [Nappo (2002)]. The location where ω = N is the turning depth. The M2
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lunar semi-diurnal tide oscillates above topography within the ocean and is a well known
generator of internal waves, but King et al. (2012) found that there are multiple locations
in the ocean where the natural frequency falls below the M2 tidal frequency (ωM2 =
1.4052 x 10−4 rad/s). Thus there are a significant number of turning depths within the
ocean, with topography which would generate only evanescent waves from the M2 tide.
Numerical simulations performed by Paoletti et al. (2014) found that the wave power
transferred from an evanescent region to a propagating region was very weak relative
to that of an internal wave formed over topography completely within a propagating
region. However, there could still be significant energy transferred from the evanescent
regions to propagating regions, depending on how close the topography is to the turning
depth and the relative strength of the stratification. Using exponential stratifications,
as is frequently seen in the deep ocean [King et al. (2012)], we perform an experimental
investigation of both of these effects to understand the impact of evanescent regions and
compare experimental results to linear theory.

2 Methods

2.1 Experimental Setup

Experiments were performed in an acrylic tank measuring 2.45m x 0.15m x 0.91m (length
x width x height). Each stratification was created using a variation of the double bucket
method [Hill (2002)] with N varying between 0.8-2.0s−1 for each test. The density profiles
were chosen to reflect the exponential oceanic profiles found by King et al. (2012) and
were set to the form

ρ = aebz + c (2)

Values for the coefficients of a, b, and c for each case, along with the corresponding values
of Nmin and Nmax, are shown in Table 1. A Gaussian shaped topography was oscillated at
a constant frequency, though the frequencies varied between 1.0 and 1.3 s−1 for each case
and were chosen based on the density profile. Case specific frequencies are also defined
in Table 1. All of the experiments used the same Gaussian topography, which was 30
cm long, 9 cm wide, and 10 cm tall at the peak. The topography shape is described by
H = 10exp(−x2/2σ2) with -15cm < x < 15cm and σ = 3. Tests were recorded using a jAi
Cv-M4+Cl progressive scan camera running at 6 fps. The topography was set to run for
15 periods before recording began to allow the system to reach steady state. Each test
lasted three minutes. Synthetic Schlieren was used to capture the wave motion and each
test was processed using Digiflow to calculate changes in the natural frequency (∆N2)
[Dalziel et al. (2000)].

Kinetic energy was estimated using two separate sets of equations. The first set of equa-
tions is based off the work of Wunsch and Brandt (2012), who used planar wave velocities
multiplied by an amplitude which varied slowly in the z direction. They related internal
wave velocities and ∆N2 to form the equation

KEprop =
ω2N2

k2(N2 − ω2) + (ω∂zN2/N2)

∣∣∣∣∆N2
o

N2

∣∣∣∣2 (3)

Here ∆N2
o represents the Fourier coefficients of ∆N2 and k is the horizontal wavenum-

ber. This equation however is not valid in the evanescent region. Instead, the following
equations define wave propagation.

u = Ue−qze−i(kx−ωt) (4)
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w = We−qze−i(kx−ωt) (5)

∆N2 = ∆N2
o e

−qze−i(kx−ωt) (6)

q2(z) = k2(1 −N2(z)/ω2) (7)

Following the methods outlined by Wunsch and Brandt to derive (3), we find

KEevan =

∣∣∣∣ qω∆N2
o

k(ω∂zN2 + qN2)

∣∣∣∣2 +

∣∣∣∣ iω∆N2
o

ω∂zN2 + qN2

∣∣∣∣2 (8)

It should be noted that m1 = iq, which accounts for the decaying wave. Thus while q is
real and is used throughout this paper, the vertical wavenumber in the evanescent region,
m1, is imaginary.

Each test provided a window of 1360x1030 pixels, with 1080 time steps. Figure 1a is
a standard image created with Digiflow where the magnitudes of ∆N2 are shown. The
topography is in the top left corner and a depiction of it has been superimposed over this
image. The height of the topography, H, the distance from the tip of the topography to
the turning depth, D, and the height of the turning depth, Hr, are also shown. Table 1
includes H/D for each case. Note how the evanescent wave moves vertically downward
towards the turning depth, and then the internal wave starts at the turning depth and
propagates away along a curve. This curve is due to the exponential density profile.
For each experiment, the exact location of the wave varied depending on the horizontal
location of the camera. To analyze each case, a horizontal line of data was taken through
time at specific pixel heights. The starting point of each horizontal line was chosen to
match a curve fit of the wave in order to capture the actual wave. Figure 1b represents
the entire experimental window and includes both the curve fit of the wave from Figure
1a and the corresponding horizontal lines used for analysis. The data lines were taken at
every tenth pixel along the height of the window, but the horizontal starting point varied
depending on the region of the data. The horizontal starting points in the propagating
region were determined by the curve fit to maximize the amount of relevant data. Notice
that to the left of the curve in Figure 1a there is little to no information. In other cases,
the topography was more centered and the left leg of the internal wave beam is visible.
To maintain similarity between cases, only the right half of the internal wave beam was
analyzed. For the evanescent region, the horizontal starting location was the same for each
data line because the evanescent wave travels vertically downward and does not curve.

Table 1: The experimental setup of the 5 separate tests performed. The
coefficients a, b, and c correspond to Equation 2. See Figure 1a for the
locations of H and D within the experiment window.

Case a b c Nmin Nmax ω H/D
1a
1b

147.12 -1.73 969.46 0.9618 1.580 1.282 0.431

2a
2b

143.39 -1.71 969.31 0.9365 1.551 1.083 1.70

3a
3b

151 -2.5 986.01 0.8964 1.9252 1.168 0.903

4 158.53 -2.14 974.07 0.947 1.8227 1.083 2.94
5 158.53 -2.14 974.07 0.947 1.8227 1.083 1.786
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(a) Digiflow Results
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(b) Horizontal line locations

Figure 1: In (a), standard Digiflow results are shown for Case 3b along with the turning depth, the curve
fit of an internal wave in the propagating region, and important length scales. Image (b) has the same
curve fit and includes the horizontal lines used for analysis plotted against the curve for the propagating
region. The evanescent region is visible in the upper portion of the experiment window.

A two-dimensional Fourier transform was performed on the individual horizontal lines of
data through time. The Fourier amplitudes were then used in (3) or (8), along with the
corresponding N value for the height, to estimate the kinetic energy. The reported energy
values come from summing the energy of frequencies near the excitation frequency, as this
location and the frequencies directly around it always contained the highest energy.

2.2 Linear Theory

A linear analysis of wave propagation from an evanescent to a propagating region was
also completed. This method is similar to that performed by Pedlosky (2003). To match
the domain of the experiments, the height of the computational domain was chosen from
0< z <0.6m, with the propagating region from z = 0 to z = Hr and the evanescent region
from z = Hr to z = 0.6m.

Following Pedlosky (2003) for a slowly varying wave, the vertical velocity in the propa-
gating region was defined as

w2 = A2e
i(kx−ωt+θ2) (9)

A2(z) = A2o/(m/mo)
1/2 (10)

θ2 =

∫ z

zo

mdz (11)

m = k
[
N2/ω2 − 1

]
(12)

The amplitude A2 varies with height due to the change in both N and the vertical
wavenumber, m, with height. Pedlosky (2003) notes that θ2 would become mz for a
purely planar wave, however the integration is necessary due to the varying stratification.
Equations 9 through 11 assume that both A2 and θ are slowly varying functions of z.
The value for A2o was calculated from experimental results using the kinetic energy at a
height of 0.2m, along with the associated N and m values at this height. This location
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was chosen because it is far from the turning depth and the bottom boundary for all cases
shown. Using continuity, the horizontal velocity was defined by

u2 =
−w2

k

[
−dm/dz

2im
+m

]
(13)

Kinetic energy in the propagating region is calculated per unit volume using

KE = u2 + w2 (14)

We defined the vertical velocity in the evanescent region in a similar manner to the prop-
agating region but also allow the vertical component to decay. The vertical wavenumber
is defined by q (see (7)), and A1 and θ1 were again assumed to be slowly varying functions
of z. Using continuity u1 can be found.

w1 = A1e
i(kx−ωt)eθ1 (15)

u1 =
−w1

ik

[
−dq/dz

2q
+ q

]
(16)

A1(z) = A1o/(q/qo)
1/2 (17)

θ1 =

∫ z

zo

qdz (18)

Kinetic energy was then calculated using Equation 14. In both regions, as the wave
approaches the turning depth the amplitudes approach infinity. In order to circumvent
this difficulty and relate each region to the experimental data, we chose to calculate A1

from the experimental kinetic energy analysis of the evanescent region. A1o was chosen
at a depth of 0.5m as this location is centrally located between the topography and the
turning depth for each experiment. In the future, a matching boundary condition at the
turning depth will be used to relate A1 and A2.

3 Results

Kinetic energy as a function of height is shown for a representative case, 2b, in Figure 2a.
Each point corresponds to the lines in Figure 1b. Starting at the top of the image, the
kinetic energy decreases rapidly as the evanescent wave travels vertically down towards
the turning depth. Beyond the turning depth, the evanescent wave has become an internal
wave. Oscillations in the kinetic energy are clearly visible, along with a slight decay in the
oscillation amplitude. It is possible that the oscillation is due to a lack of resolution in the
lower half of the experimental window. Comparing the experiment to the linear model, a
similar oscillation and slight decay is seen. This is reasonable for the linear model as θ2
would create oscillations and the decay of A2 would cause a decay in the overall kinetic
energy. Further investigation of the oscillation and decay in the experiment would require
an increased spatial resolution and then a more accurate comparison between the linear
model and experimental values could be made. For the evanescent region, the linear model
shows a sharp decrease in the energy, followed by a slight increase. This compares well
with the experiments. While each of the models have been matched to specific locations
in the experimental results, the overall behavior of both models provides insight to the
experiments performed. It is expected that the evanescent model with varying N can be
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(a) Case 2b Results (b) Case 4 and 5 Results

Figure 2: Results from two separate tests are shown. In (a), comparison of the experimetnal and linear
theory results is shown for case 2b. In (b) the experimental results of case 4 and 5 are compared.

used in conjunction with the previously defined propagating model [Pedlosky (2003)] to
match the behavior between the two regions.

To explore the effects of H/D, cases 4 and 5 are compared. Both tests were performed
at the same excitation frequency and within the same density profile, but for case 4 the
topography was situated closer to the turning depth. The ratio of H/D for case 4 was
2.94, while case 5 was 1.79. The kinetic energy for both experiments is plotted in Figure
2b. It can be seen that case 4 has an overall higher energy content than case 5. These
results show clearly that evanescent wave energy decays exponentially, and the effects of
that decay are visible in the propagating region as the internal wave in case 4 maintains
a higher energy content than case 5 throughout the height. The difference in energy is
due to the evanescent waves in case 5 traveling farther before reaching the turning depth,
causing the wave to decay over a greater distance compared to the waves in case 4. The
two experiments share the same phase and general shape, leading to the conclusion that
the overall effect of topography location relative to the turning depth is seen in the energy
content of the wave. The same trend was seen in comparing the models of the two cases.

A summary of the results for each case is listed in Table 2. The Froude numbers shown
are calculated as Frevan = ω/Nmin and Frprop = ω/Nmax. The energy input to the
experiment was estimated as KEinput = u2ave,top, where uave,top is the average velocity of
the topography. This does not account for dissipation of energy due to friction of the
topography sliding on the track, or losses due to any generated turbulence, but is instead
only a first order approximation of input energy. The output kinetic energy of each region
was normalized by the input energy, and these ratios are shown in Table 2. The output
energy for the evanescent region is taken as the minimum kinetic energy in that region,
while the output for the propagating region is the average kinetic energy of the oscillating
portion of the region. Values near the turning depth were not included for either region.
Cases 1-3 each had two runs, so the normalized energy was averaged between the runs. In
the evanescent region, the model consistently under-predicts the kinetic energy compared
to the experimental results. The reverse is true in the propagating region where the
model over-predicts the kinetic energy. Comparing the experimental results, the minimum
kinetic energy in the evanescent region is always greater than the average energy in the
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propagating region, as would be expected. Further comparisons of the linear models will
be made once the models have been matched.

Table 2 shows that increasing H/D will increase the total energy in both the evanescent
and the propagating regions. As a large value for H/D indicates that the topography is
near the turning depth, this is a reasonable result. Comparing case 1 and 3, values for
Frevan and Frprop are very similar. The main difference between the cases comes from
H/D, which is almost doubled from case 1 to case 3. The energy in case 3 is a little over
30 times that of case 2. Cases 4 and 5 also have similar increases in H/D, though H/D is
larger and the normalized energy of the propagating region for case 4 is not quite triple
that of case 5. This could indicate a trend that while increasing H/D does increase the
kinetic energy in the propagating region, the effect diminishes for large values of H/D.

Another trend seen in Table 2 is that increasing Frevan and Frprop leads to a decrease in
kinetic energy. Increasing Frevan indicates that the natural frequency near the topography
is decreasing. A weak stratification would generate waves with low kinetic energy, and
that energy would die away more rapidly as the wave traveled to the turning depth. It
is possible that increasing Frevan would dominate over the effects of Frprop on kinetic
energy as the evanescent wave amplitudes are expected to decay exponentially, whereas
there is only a slight decay in the propagating region. The only significant variation in
energy and Frprop is seen in case 1 and 3, but these cases also have large changes in H/D.
Case 3 also shows a very similar relative energy between the experimental evanescent and
propagating regions, but the same trend is not seen in case 1, where Frprop is greater than
case 3, lending to the idea that increasing Frprop will decreases the kinetic energy in the
propagating region. Further exploration of the independent effects of Frevan and Frprop
are needed before more conclusions can be drawn.

Table 2: A summary of the results for each case is presented.

Case Frevan Frprop H/D
Normalized Energy
Evanescent Region

Normalized Energy
Propagating Region

KEevan,exp KEevan,model KEprop,exp KEprop,model

1a
1b

1.33 0.817 0.431 0.0063± 0.0003 0.0003 ± 0.0001 0.0010 ± 0.0001 0.0019 ± 0.0003

2a
2b

1.15 0.698 1.70 0.116 ± 0.03 0.0861 ± 0.010 0.0439 ± 0.012 0.0651 ± 0.04

3a
3b

1.30 0.607 0.903 0.0342 ± 0.006 0.0198 ± 0.005 0.0301 ± 0.0008 0.0514 ± 0.0017

4 1.14 0.594 2.94 0.135 0.160 0.0643 0.125
5 1.14 0.594 1.79 0.081 0.101 0.0248 0.0804

4 Conclusion

An investigation of energy transfer from evanescent to propagating regions was performed.
By expanding on the experimental equations of Wunsch and Brandt (2012) and lin-
ear model of Pedlosky (2003), equations and models to estimate kinetic energy within
evanescent regions were derived. An analysis of the kinetic energy results showed that
increasing H/D can lead to sharp increases of kinetic energy transferred from evanescent
regions to propagating regions. The opposite is true for increasing Frevan and Frprop, as
relative kinetic energy decreased with increasing Fr. Future work will combine the linear
models by matching boundary conditions at or near the turning depth to further explore
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the effects of Fr and H/D. These results will be extrapolated to calculate oceanic energy
estimates.
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