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Abstract
The surface quasi-geostrophic (SQG) equations are a model for low-Rossby number geo-
physical flows in which the dynamics are governed by potential temperature dynamics
on the boundary. The model can be used to explore the effect on transport of the tran-
sition from two-dimensional to three-dimensional mesoscale geophysical flows. On an
f -plane with linear stratification, we examine the dynamics of SQG vortices and the re-
sulting three-dimensional flow including contributions at first order in Rossby number
going beyond the usual QG equation to compute the velocity. While it is simple to obtain
the vertical velocity, finding O(Ro) horizontal flow is more involved. The Finite Time
Braiding Entropy (FTBE) of Thiffeault & Budisic is used to quantify the chaotic mixing
induced by three point vortices. We also consider the exact SQG vortex solution devel-
oped by Dritschel (2011) from the limit of a QG ellipsoid of constant potential vorticity.
We examine the interaction of two such vortices and the resulting transport.

1 Introduction

At large scales, the ocean can be modeled as a thin body of fluid spread over a rotat-
ing sphere. The vertical velocity is weak compared to the horizontal velocity, of order
Rossby number Ro = U/fL. While the leading-order dynamics give horizontal velocities,
transport could be significantly altered by the weak three-dimensional flow.

This work examines transport due to idealized vortex solutions in the SQG model. Trans-
port was studied by Aref and Pomphrey (1980) under the name “chaotic motion” in the
simplified case of point vortices in two-dimensional flow. Aref & Pomphrey (1980) found
that three interacting vortices would follow regular trajectories, and four vortices could
follow chaotic trajectories. Thus, three point vortices that follow periodic paths can pro-
duce chaotic flow and transport in the surrounding fluid. In the ocean, mesoscale vortical
structures are observed. Here three SQG point vortex solutions are considered and their
resulting chaotic mixing is examined.

In order to analyze the quantitative effect of O(Ro) corrections, it is necessary to use an
appropriate measure. In chaotic advection, a relevant property is the complexity of the
flow, and one of the most convenient measures of global complexity seems to be topo-
logical entropy. Topological entropy represents the exponential growth of the number
of distinguishable orbits under the repeated iteration of the flow map: the higher the
topological entropy, the more chaotic mixing is present. However, this value is difficult
to compute given only a velocity field (Newhouse and Pignataro, 1993; Bowen, 1973).
Thiffeault & Budǐsić have recently developed a tool called Braidlab that, among other
functions, calculates the Finite Time Braiding Exponent (FTBE), which approximates
topological entropy using particle trajectories (Thiffeault and Budǐsić, 2014; Budǐsić and
Thiffeault, 2015). The benefit of FTBE over the more commonly used Finite Time Lya-
punov Exponent (FTLE) (Peacock and Dabiri, 2010) is that FTBE provides a global
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measure of complexity as opposed to a local one (Allshouse and Peacock, 2015), allowing
us to compare quantitatively the extent of stirring exhibited by different flows and thus
explore the parameter space.

The FTBE depends on the number of trajectories and the length of integration time, so
here we fix our analysis to include 64 trajectories. As an estimate, the FTBE also varies
slightly according to the time step chosen and the initial conditions of the trajectories. To
quantify this variation, 13 different sets of 64 trajectories were used to generate a mean
FTBE and standard deviation for each flow considered.

2 Point Vortices

The SQG model presented by Held et al. (1995) is derived from the QG equations for three-
dimensional flow on a rotating planet, with the hydrostatic and f -plane approximations.
These approximations are appropriate for mesoscale flow. In Cartesian geometry with
rotation given by the Coriolis parameter, f , the equations are

Ro
Du

Dt
− v = −φx,

Ro
Dv

Dt
+ u = −φy,

θ = φz, (1)

ux + vy +Ro wz = 0,

Dθ

Dt
+ w = 0.

with the conventional material derivative

D

Dt
=

∂

∂t
+ u · ∇,

and where the variables (u, v, w) are the velocities in the (x, y, z) directions, respectively; φ
is the geopotential height; and θ is the buoyancy. The physical constants in the equations
of motion are the Coriolis parameter, f , and the buoyancy frequency, N . An expansion
in small Ro� 1 yields at O(1) (Vallis, 2006; Muraki et al., 1999)

∆ψ = q, ψs
z = θs,

Dq

Dt
= 0, (2)

where ∆ is the three-dimensional Laplacian, q is the potential vorticity, the superscript
s indicates that the variable is evaluated at the surface of the domain (conventionally
z = 0), and the subscript z indicates the z-derivative. The SQG model is (2) with the
more restrictive and dynamically consistent condition that q = 0 in the interior.

While the 2D Euler system is governed by the specified vorticity, in SQG flow the system
is governed instead by the temperature at the surface. Thus, the analogous point vortex
flow in SQG is found from the definition

θs = κδ(x− x0)δ(y − y0) . (3)

The solution to (2) is

ψ = − κ

2π

1

|x− x0|
, (4)
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given in Held et al. (1995). Note that, unlike the 2D case, this solution has three-
dimensional dependence. For an arbitrary number of vortices with strengths κj and
positions xj, i.e.

∆ψ = 0, ψs
z =

∑
j

κjδ(x− xj)δ(y − yj), (5)

the solution is the linear combination

ψ = − 1

2π

∑
j

κj
|x− xj|

. (6)

The horizontal evolution of a given point vortex is determined by the sum of contributions
of every other vortex in the system, given by(

ẋi
ẏi

)
= − 1

2π

′∑
j

κj
|xi − xj|3

(
yi − yj
−xi + xj

)
, (7)

where the prime indicates that the self-interaction i = j is ignored.

This system can be solved for any vortex distribution and initial passive particle position.
If the resulting trajectories are strobed at every period of vortex motion and the frame
is rotated to remove the vortex shifting, Poincaré maps such as those shown in Figure 1
are obtained. These can be compared to the two-dimensional Poincaré maps given in the
first figure in Kuznetsov and Zaslavsky (1998).

It can be seen in Figure 1 that, while the dynamics are purely two-dimensional, the
flow has vertical dependence. Even when particles follow regular trajectories (a,b,c), the
trajectories change with depth. In the case where mixing is exhibited, the barriers of
chaotic motion seem to extend as three-dimensional surfaces, and islands are observed at
a range of depths.

Because the vortices are of equal strength and we have fixed L = 1, the only varying
parameter is H. FTBE vs. H is shown in Figure 2. The boundary between the two
regimes of vortex motion is indicated with the vertical dotted line, and it seems that for
the lower-energy flows the observed mixing is relatively constant, with a minimum seen
right at this regime boundary. Then, as the energy of the vortex configuration increases
into the two-orbiting-vortices regime, we see FTBE increasing as well. Comparing the
SQG case in Figure 2(a) to the classical two-dimensional case in Figure 2(b) shows the
same qualitative trends, but the SQG case exhibits a higher levels of mixing than the
classical case. Finally, in Figure 2(c) FTBE is calculated at increasing depth, where the
plane of vortex motion is z = 0. While the vortices still produce mixing at a depth close
to the surface, the FTBE falls steeply at depths below approximately z = −0.25.

The effect of varying L in the equal strength case is examined in Figure 3. It is clear
from these results that changing L will vary the critical depth at which the FTBE drops
steeply. Additionally, L affects the scale of the FTBE, where smaller L leads to overall
higher FTBE. Small L implies that the vortices are spaced very near one another, resulting
in larger velocity magnitudes in the flow between the vortices. It is perhaps not surprising
that these higher velocities lead to more efficient mixing.

The small O(Ro) corrections to the velocities from Muraki et al. (1999) are given in (1).
The O(Ro) solutions include derivatives of the O(1) solution, and in the point vortex case,
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(a) H = 0.48, z = 0 (b) H = 0.48, z = −0.25 (c) H = 0.48, z = −0.5

(d) H = 0.54, z = 0 (e) H = 0.54, z = −0.25 (f) H = 0.54, z = −0.5

(g) H = 0.58, z = 0 (h) H = 0.58, z = −0.25 (i) H = 0.58, z = −0.5

Figure 1: Poincaré maps for SQG point vortices for three distinct vortex configurations sampled at three
depths. Vortex positions are designated by blue crosses at the surface in (a,d,g). Compare the z = 0
plots (a,d,g) to solutions in Kuznetsov and Zaslavsky (1998).
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Figure 2: For three equal strength SQG vortices, the FTBE is calculated for various H, plotted (a) at
the surface and (c) versus depth. For comparison, the FTBE for three equal strength two-dimensional
vortices are shown in (b). Error bars of the FTBE are determined by statistical analysis of several choices
of trajectory subsets. The vertical dotted line indicates the boundary between the two regimes of motion.
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(a) Ro = 0, L = 0.1 (b) Ro = 0, L = 1 (c) Ro = 0, L = 10

Figure 3: Comparing the O(1) equal strength point vortex solutions of FTBE vs. depth under changes
to L. These plots show there is a critical depth beyond which the FTBE decreases sharply. For (b) L = 1
the critical depth appears to be z = −0.25, and increasing Ro increases the dropoff of FTBE for higher
energies. For (a) L = 0.1, the critical depth has decreased to z = −0.075, and mixing has increased. For
(c) L = 10, the critical depth has increased to z = −0.75, and mixing has decreased.

(a) z = 0 (b) z = −0.25 (c) z = −0.5

Figure 4: Comparison between the O(1) equal strength point vortex solutions and those including w at
height (a) z = 0, (b) −0.25, and (c) z = −0.5. Since w = 0 at the surface, it is expected that the solutions
overlap as seen in (a).

where the O(1) solution is singular, these terms are problematic. However, the vertical
velocity can be obtained just from the energy conservation equation

Dθ

Dt
+ w = 0.

For the point vortex solution, it is found that

w = 3z
∑
j

κj
2π

(u− ẋj) · (x− xj)

|x− xj|5
(8)

where

u− ẋi =
′∑
j

κj
2π

[
(−y + yj, x− xj, 0)

|x− xj|3
− (−yi + yj, xi − xj, 0)

|xi − xj|3

]
and the prime on the sum indicates that the i = j term is not considered. It is thus possible
to examine the effect of vertical velocity on mixing, though in this case the solution is not
dynamically consistent because the velocity is not divergenceless at O(Ro).

FTBE results comparing the O(Ro) and O(1) solutions is shown in Figure 4 for Ro =
0.01, 0.1. At the surface, the solutions are identical, which follows from the constraint
that w = 0 at the surface. At depths below the surface, including w seems to increase
mixing, with larger w (resulting from larger Ro) producing more mixing. In the case with

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 5



Figure 5: The FTBE vs. depth from the O(Ro) equal strength point vortex solutions with Ro = 0.01.
Compare to O(1) in Figure 3(b). The dropoff appears steeper for higher energies.

w, the particle positions are projected into the x-y plane to obtain the maps. Here it
appears that the area of the islands around each vortex increases with Ro, but the edge
of the outer mixing boundary seems slightly larger in (c,d) for Ro = 0.1.

We can also examine how varying Ro as well as L affects the trend of FTBE with depth.
There is no characteristic vertical length, but as seen in Figure 5(a,c,d), varying the
characteristic horizontal length L will change the critical depth, from approximately z =
−0.075 in the L = 0.1 case to approximately z = −0.75 for L = 10. We find that the
critical depth seems to change according to L1/2. The comparisons of Figure 5(a,c,d)
additionally shows that the extent of mixing has decreased, which follows intuitively from
the weaker velocities due to larger vortex spacing. As seen in Figure 5(b), changing Ro
does not affect this critical depth, but does seem to cause a sharper dropoff in FTBE for
higher energies. This may be due to an attraction towards periodic trajectories, so that
particles below the critical depth tend to drift deeper and no longer experience mixing.

3 Elliptic Vortices

To examine a solution that is dynamically consistent at O(Ro), a different model problem
must be used. Harvey and Ambaum (2011) found that discontinuities in surface buoyancy
necessarily result in infinite velocities at those locations. Thus, a continuous buoyancy
distribution is needed. One such solution was detailed by Dritschel (2011), who considered
the exact solution in QG for an ellipsoid containing a region of constant potential vorticity,
which will rotate and maintain its shape (Dritschel et al., 2004). Dritschel orients this
ellipsoid along the z = 0 plane so that one of its axes is vertical, then takes the limit as
that axis length goes to zero. The potential vorticity is then contained on the boundary,
and thus is an exact solution to SQG. The resulting governing equations are

∆Φ0 = 0 ,
(
Φ0

z

)s
= βm

√
1− x2

a2
− y2

b2
, (9)

where a, b are the semi-major and -minor axis lengths, respectively, aligned along the
Cartesian axes, and βm is a constant designating the strength of the ellipse.

A single elliptic vortex will rotate about its center and maintain its shape. Below the
surface, three-dimensional trajectories in the flow are periodic. If multiple vortices are
present, they will interact with one another and lose their elliptic shapes (Dritschel et al.,
2004). Here we are not interested in solving this interaction exactly, but are looking
for a manageable buoyancy solution that induces mixing in order to examine the effect
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(a) (b) (c)

Figure 6: Trajectories for 16 particles initiated near (1.5,0) and integrated over a time interval of 5,000
on (a) z = 0 and (b) z = −0.25 in the frame of reference where the ellipse centroids remain on the
x-axis. Initial ellipse positions are also shown in (a) in black. Additionally, (c) the mean buoyancy of the
particles is shown for z = 0 (blue) and -0.25 (red) over time. Buoyancy results are nearly identical for
Ro = 0, 0.01, 0.1.

of O(Ro) velocities on transport. Hence the vortex interaction is approximated using a
moment model following Bersanelli (2012) such that the ellipses will remain ellipses as
the flow evolves.

For two identical elliptic vortices, there appears to be a negligible amount of mixing.
The approximations lead to particle trajectories that intrude into the vortex, but the
surrounding flow does not seem to exhibit chaos, as shown in Figure 6(a) in the frame
of motion where the ellipses remain on the x-axis. These trajectories were computed for
a time interval of 5,000, over which the ellipses completed 608 complete rotations about
their centroids.

Trajectories are additionally examined away from the surface in Figure 6(b). These par-
ticles were initiated for the same x-y positions as in (a), but at a depth of z = −0.25.
While qualitatively similar, these two sets of particles have distinct trajectories. The
mean buoyancy of the particles is also shown in Figure 6(c), again showing the vertical
dependence of the flow as well as that this approximation does not conserve buoyancy.

The results presented here are not meant to provide a rigorous proof that this flow does
not result in chaos. Because we are looking for the effect of O(Ro) velocities interacting
with horizontal mixing, and not whether O(Ro) velocities alone can induce mixing, the
model flow should exhibit mixing at O(1). Based on the mixing results for point vortices,
three elliptic vortices are being considered in pending work. Both two and three ellipses,
as well as the three point vortex solution, are further examined in Taylor (2016).

This work was funded by the Ocean 3D+1 Office of Naval Research Multiple University
Research Initiative.
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