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Abstract

The KdV, MKdV, Boussinesqg-type, Benjamin-Ono, NLS, and eKdV equations have
been applied to analyze nonlinear internal waves in a two-layer system. The KP and
Boussinesqg-type equations have also been used for the analysis of two-layer motions
with two horizontal dimensions. However, there are only few equations for a three-layer
system applicable to particular or special conditions, such as breather solutions in a
three-layer system based on the Gardner equation. Nakayama et al. (2015) have
proposed the Fully-nonlinear and strongly-Dispersive Internal wave equations in a
three-Layer System (FDI-3LS equations) by extending the two dimensional counterpart
(FDI-2LS equations; Nakayama and Kakinuma, 2010), which successfully reproduced a
large-amplitude Mach stem due to soliton resonance. This study aims to investigate the
applicability of the FDI-3LS equations to analyze internal waves in a three-layer

system.

1 Introduction

Monismith (1986) demonstrated that Wedderburn Number (Thompson and Imberger,
1980) could be useful for evaluating upwelling phenomena in a three-layer stratification
with constant density in the upper and bottom layers and a linear transition between the

two. Imberger and Patterson (1990) revealed that the occurrence of upwelling in the
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laboratory experiments by Monismith (1986) can be modeled by introducing Lake
Number. Stevens and Imberger (1996) also found that upwelling phenomena can be
categorized by using Wedderburn Number and Lake Number. On the other hand,
Al-Zanaidi and Dore (1976) revealed a reverse intrusion inside of the density transition
layer when internal waves propagate in a two-layer system. Al-Zanaidi and Dore (1976)
also found that, unlike the intrusion shown in Nakayama and Imberger (2010) and
Nakayama et al. (2012), the reverse intrusion occurs irrespective of the occurrence of
internal wave breaking due to topographical effects. The same phenomena were also
found in the field observations by Inall et al. (2001) and in the laboratory experiments
by Nguyen (2013) in a three-layer system with a density interface between the top and

bottom layers.

There have been many equations for the analysis of a one-layer or two-layer system. For
example, the KdV, MKdV, Boussinesq-type, Benjamin-Ono, NLS, eKdV and KP
equations have been applied to analyze nonlinear internal waves. However, there are
only few studies regarding the analysis of a three-layer system using fully-nonlinear and
strongly-dispersive effects. As one of the fully-nonlinear and strongly-dispersive wave
equations, Nakayama and Kakinuma (2010) proposed the FDI-2LS equations. The
FDI-2LS equations can satisfy the dispersion relation in a two-layer system by
introducing velocity potential expressed as power function of the z-coordinate
(Nakayama and Kakinuma, 2010). Also, the FDI-2LS equations have been revealed to
reproduce internal solitary waves more accurately than the Boussinesg-type equations
by taking into account the quadratic or cubic term in the velocity potential. Therefore,
this study aims to extend the FDI-2LS equations to a three-layer system and to

investigate the applicability of the proposed equations in a three-layer system.

2 Fully-nonlinear and strongly-Dispersive Internal wave equations

Three layers of an inviscid and incompressible fluid are considered as shown in Figure
1, where three layers are indicated as i = 1, i = 2 and i = 3 from the top to bottom. The
depth and density of each layer is indicated by 4; and p;, respectively, with p; < p2 < ps.

By assuming irrotational flow, velocity potential ¢; is introduced as:
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where u; is the horizontal velocity vector for the layer i, and w; is the vertical velocity

for the layer i.

Figure 1 Three-layer system for FDI-3LS equations

The functional for the variational problem is obtained as (3) by adding terms for

interfacial pressure into the variational method by Luke (1967).
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where ¢, is the velocity potential of the i layer, g is the gravitational acceleration, p; is
the density of i th layer, p; is the pressure at the bottom of the i th layer, and P; is the static
pressure of the i ™ layer. P; depends on the vertical coordinate system. The velocity

potential is defined by equation (4) as a function of the vertical coordinates.

xthz {zh }la(xt) (4)

where Z; is the vertical profile function of o in the i layer, ¢; is the weight for o in the
™ Jayer, respectively. j is 0 or 1 that corresponds to the lower or upper boundary of the
i"™ layer. By defining Z; in (4) as power function of the vertical coordinate system as (5),

the Fully-nonlinear and strongly-Dispersive Internal wave equations in a three-layer
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System (FDI-3LS) are given from (6) to (17).
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where, br is the bottom level, summation convention applies to o and {3, and Ryg and

Sap are coefficients. The same numerical scheme as Nakayama and Kakinuma (2010)

was applied. Please see Nakayama and Kakinuma (2010) for more details.

VIIIth Int. Symp. Stratified Flows, San Diego, USA, Aug. 29 — Sept. 1, 2016



(a) case Al ==== FDI-3LS equations

(m) @ Laboratory experiments (Stevens & Imberger, 1996)
015

F ~._~~~
0.11 B .

L Ld “-‘--_.__ i
0.07 ---"’:.'.:-_-_-_-..:-f

B aREEE SRS S I— ¢
0.03

0 0.4 0.8 1.2 1.6 (m) 2
(b) case A2

(m)

1.6 (m) 2

-
~——
—

1.6 (m) 2

Figure 2 Comparisons between Stevens and Imberger (1996) and FDI-3LS.

3 Result and Conclusion

We applied the FDI-3LS equations to the three-layer laboratory experiments in a tank
with the length of 2 m and the water depth of 0.16 m, in which wind stress was given by
a belt-type shear maker in order to investigate upwelling phenomena (Stevens and
Imberger, 1996) (Figure 2). The Wedderburn Number (WN) was 0.9 and the Lake
Number (LN) was 2.0 in Case Al, which showed that the upper density interface
reached the water surface and the displacement of the lower density interface was small
(WN<1 and LN>1) (black circles in Figure 2). Case A2 is similar to Case A1, but wind
stress was larger than case A1 (WN=0.5 and LN=I1.1). In case A3, the upper density
interface was found to reach the water surface very rapidly compared to the other two
cases due to the smaller WN and LN (WN=0.07 and LN=0.35). The FDI-3LS equations
successfully reproduced the density interface motions for all the cases (broken lines in

Figure 2). It was found from the numerical simulations that non-hydrostatic effect was

VIIIth Int. Symp. Stratified Flows, San Diego, USA, Aug. 29 — Sept. 1, 2016



significant for the second mode internal waves in the experiments.
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