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Abstract 

The KdV, MKdV, Boussinesq-type, Benjamin-Ono, NLS, and eKdV equations have 

been applied to analyze nonlinear internal waves in a two-layer system. The KP and 

Boussinesq-type equations have also been used for the analysis of two-layer motions 

with two horizontal dimensions. However, there are only few equations for a three-layer 

system applicable to particular or special conditions, such as breather solutions in a 

three-layer system based on the Gardner equation. Nakayama et al. (2015) have 

proposed the Fully-nonlinear and strongly-Dispersive Internal wave equations in a 

three-Layer System (FDI-3LS equations) by extending the two dimensional counterpart 

(FDI-2LS equations; Nakayama and Kakinuma, 2010), which successfully reproduced a 

large-amplitude Mach stem due to soliton resonance. This study aims to investigate the 

applicability of the FDI-3LS equations to analyze internal waves in a three-layer 

system. 

 

1  Introduction 

Monismith (1986) demonstrated that Wedderburn Number (Thompson and Imberger, 

1980) could be useful for evaluating upwelling phenomena in a three-layer stratification 

with constant density in the upper and bottom layers and a linear transition between the 

two. Imberger and Patterson (1990) revealed that the occurrence of upwelling in the 
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laboratory experiments by Monismith (1986) can be modeled by introducing Lake 

Number. Stevens and Imberger (1996) also found that upwelling phenomena can be 

categorized by using Wedderburn Number and Lake Number. On the other hand, 

Al-Zanaidi and Dore (1976) revealed a reverse intrusion inside of the density transition 

layer when internal waves propagate in a two-layer system. Al-Zanaidi and Dore (1976) 

also found that, unlike the intrusion shown in Nakayama and Imberger (2010) and 

Nakayama et al. (2012), the reverse intrusion occurs irrespective of the occurrence of 

internal wave breaking due to topographical effects. The same phenomena were also 

found in the field observations by Inall et al. (2001) and in the laboratory experiments 

by Nguyen (2013) in a three-layer system with a density interface between the top and 

bottom layers.  

 

There have been many equations for the analysis of a one-layer or two-layer system. For 

example, the KdV, MKdV, Boussinesq-type, Benjamin-Ono, NLS, eKdV and KP 

equations have been applied to analyze nonlinear internal waves. However, there are 

only few studies regarding the analysis of a three-layer system using fully-nonlinear and 

strongly-dispersive effects. As one of the fully-nonlinear and strongly-dispersive wave 

equations, Nakayama and Kakinuma (2010) proposed the FDI-2LS equations. The 

FDI-2LS equations can satisfy the dispersion relation in a two-layer system by 

introducing velocity potential expressed as power function of the z-coordinate 

(Nakayama and Kakinuma, 2010). Also, the FDI-2LS equations have been revealed to 

reproduce internal solitary waves more accurately than the Boussinesq-type equations 

by taking into account the quadratic or cubic term in the velocity potential. Therefore, 

this study aims to extend the FDI-2LS equations to a three-layer system and to 

investigate the applicability of the proposed equations in a three-layer system.	
 	
 

 

2  Fully-nonlinear and strongly-Dispersive Internal wave equations 

Three layers of an inviscid and incompressible fluid are considered as shown in Figure 

1, where three layers are indicated as i = 1, i = 2 and i = 3 from the top to bottom. The 

depth and density of each layer is indicated by hi and ρi, respectively, with ρ1 < ρ2 < ρ3. 

By assuming irrotational flow, velocity potential φi is introduced as:  
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ui = ∇φi  and wi =
∂φi
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where ui is the horizontal velocity vector for the layer i, and wi is the vertical velocity 

for the layer i.  

 

Figure 1 Three-layer system for FDI-3LS equations 

The functional for the variational problem is obtained as (3) by adding terms for 

interfacial pressure into the variational method by Luke (1967).  
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where φi is the velocity potential of the ith layer, g is the gravitational acceleration, ρi is 
the density of i th layer, pi is the pressure at the bottom of the i th layer, and Pi is the static 

pressure of the i th layer. Pi depends on the vertical coordinate system. The velocity 

potential is defined by equation (4) as a function of the vertical coordinates.  

φ
i
x, z,t( ) = Zi,α z,hi x( ){ } fi,α x,t( )

α=0

N−1

∑
 

     (4) 

where Zi, is the vertical profile function of α in the ith layer, φi, is the weight for α in the 
ith layer, respectively. j is 0 or 1 that corresponds to the lower or upper boundary of the 

ith layer. By defining Zi, in (4) as power function of the vertical coordinate system as (5), 

the Fully-nonlinear and strongly-Dispersive Internal wave equations in a three-layer 
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System (FDI-3LS) are given from (6) to (17).  

Zi,α = z
α

   
     (5) 
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P2 = − ρ2 −ρ1( )g h22   
    (16) 

P3 = ρ3 −ρ1( )g h22   
    (17) 

where, bT is the bottom level, summation convention applies to α and β, and Rαβ and 

Sαβ are coefficients. The same numerical scheme as Nakayama and Kakinuma (2010) 
was applied. Please see Nakayama and Kakinuma (2010) for more details.  
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Figure 2 Comparisons between Stevens and Imberger (1996) and FDI-3LS.  

 

3  Result and Conclusion 

We applied the FDI-3LS equations to the three-layer laboratory experiments in a tank 

with the length of 2 m and the water depth of 0.16 m, in which wind stress was given by 

a belt-type shear maker in order to investigate upwelling phenomena (Stevens and 

Imberger, 1996) (Figure 2). The Wedderburn Number (WN) was 0.9 and the Lake 

Number (LN) was 2.0 in Case A1, which showed that the upper density interface 

reached the water surface and the displacement of the lower density interface was small 

(WN<1 and LN>1) (black circles in Figure 2). Case A2 is similar to Case A1, but wind 

stress was larger than case A1 (WN=0.5 and LN=1.1). In case A3, the upper density 

interface was found to reach the water surface very rapidly compared to the other two 

cases due to the smaller WN and LN (WN=0.07 and LN=0.35). The FDI-3LS equations 

successfully reproduced the density interface motions for all the cases (broken lines in 

Figure 2). It was found from the numerical simulations that non-hydrostatic effect was 
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significant for the second mode internal waves in the experiments.  
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