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Abstract	

We	will	discuss	a	number	of	aspects	of	ageostrophic	instability	in	two-layer	systems,	
with	specific	applications	to	deep	channel	flows	such	as	that	of	the	Denmark	Strait.		
The	work	touches	on	the	extension	to	two	layers	of	Ripa’s	Theorem,	including	a	
geometric	interpretation,	linear	stability	analysis	and	finite	amplitude	simulations	
using	a	numerical	model.		Among	other	things,	we	attempt	to	explain	the	2–4	day	
oscillations	detected	in	the	approach	flow	to	the	Denmark	Strait	sill.	

1.	Introduction	

The	Griffiths-Killworth-Stern	instability	(Griffiths,	et.	al.	1982)	acts	in	a	1.5-layer	
layer	system	in	which	the	thickness	of	the	active	layer	vanishes	at	the	edges.			The	
instability,	which	was	explored	in	the	context	of	an	eddy	or	gyre,	can	be	attributed	
to	resonance	between	different	edge	modes	arising	on	the	frontal	boundaries	
(Paldor,	1983).	Pratt	et	al.	(2008)	hereafter	PHL,	and	Simeonov	and	Stern	(2008)	
examined	a	similar	linear	instability	in	a	parallel	flow	confined	to	a	parabolic	
channel,	where	the	topography	potentially	has	a	stabilizing	influence.		The	growing	
modes	are	particularly	intriguing	in	that	they	have	zero	wave	energy	and	therefore	
do	not	formally	extract	energy	from	the	background	flow,	a	possibility	first	point	out	
by	Hayashi	and	Young	(1987).		Although	such	instabilities	alter	the	mean	flow,	they	
cannot	easily	be	classified	as	barotropic	or	baroclinic.		

The	parabolic-channel	configuration	is	often	used	to	explore	the	rotating	hydraulics	
of	deep	overflows	(Borenäs and Lundberg, 1986 and 1988 and Pratt and Whitehead, 
2006). PHL	also	considered	the	finite	amplitude	growth	of	the	unstable	edge	waves,	
using	a	numerical	model	to	track	growth	and	equilibration.		Some	success	in	
predicting	the	equilibrated	states	was	enabled	by	reference	to	Ripa’s	Theorem	(Ripa,	
1983),	a	sufficient	condition	for	ageostrophic	stability	that	involves	conditions	on	
both	the	potential	vorticity	gradient	and	the	layer	Froude	number,	thus	combining	
elements	of	classical	quasigeographic	instability	theory	with	hydraulics.		To	make	a	
connection	with	deep	overflows	PHL	also	considered	channels	that	begin	in	a	deep,	
broad	basin	and	narrow	to	a	sill	section	where	the	active	layer	spills	(Figure	1).		



			

		

Figure	1:		From	numerical	simulation	by	Pratt	et	al.	(2008)	showing	finite	amplitude	
state	achieved	as	the	result	of	unstable	growth	of	instabilities	in	a	single-layer,	
ageostrophic	flow	in	a	deep	channel	with	a	parabolic	cross	section.	The	contours	
represent	the	elevation	of	the	interface.	The	mean	flow	is	from	left	to	right	and	the	
channel	contains	a	sill	at	y=0.	To	the	right	of	the	sill,	the	dense	layer	spills	and	

becomes	banked	on	the	right	side	(facing	downstream)	of	the	channel.	

	

2.		Results	

Among	the	climate-relevant	deep	ocean	overflows,	that	of	the	Denmark	Strait	is	
particularly	complex	because	of	its	extreme	variability	on	short	time	scales,	even	
well	upstream	of	the	sill	(Harden,	et	al.	2016).		It	is	further	complicated	by	a	strong	
barotropic	component,	introduced	by	the	influence	of	the	East	Greenland	Current.		
This	factor	makes	it	difficult	to	apply	the	1.5-layer	results	mentioned	above.	For	one	
thing,	it	is	nearly	impossible	to	configure	such	a	model	so	that	it	looks	anything	like	
the	mean	flow	in	the	Denmark	Strait,	as	documented	by	Harden	et	al.	(2016).		For	
this	reason	we	have	extended	our	analysis	to	include	two-active	layers,	still	in	a	
channel	with	a	parabolic	cross-section.		This	extension	is	nontrivial	since	the	central	
part	of	the	channel	is	covered	by	both	layers,	while	the	outside	flange	regions	are	
covered	only	by	the	upper	layer.		In	addition,	the	upper	layer	may	now	contain	a	
potential	vorticity	gradient,	a	factor	that	enlarges	the	zoological	range	of	possible	
unstable	modes.		Ripa’s	theorem	can	be	extended,	but	the	required	bounds	are	more	
difficult	to	derive.		

Our	presentation	will	include	a	discussion	of	the	linear	stability	problem,	growth	
rates,	conditions	for	the	dominance	of	zero-energy	waves,	and	the	derivation,	
implications	and	geometric	interpretation	of	Ripa’s	Theorem	in	two	layers.	We	will	
also	show	numerical	simulations	(an	example	of	which	appears	in	Figure	2)	in	both	
strait	channels	and	channels	with	sills	and	width	contractions.		We	will	discuss	the	
possible	use	of	Ripa’s	Theorem	to	predict	equilibrated	states.		We	will	also	compare	
findings	with	recent	observations	of	time-variability	(Harden	et	al.,	2016)	in	the	
Denmark	Strait.	



	

Figure	2:	Plan	view	showing	lower	layer	thickness	during	the	development	of	an	
instability	in	a	parabolic	channel.	The	channel	is	aligned	in	the	x-direction.	
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