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Abstract 
In this study we examine two-component shear flows that are stable with respect to Kelvin-
Helmholtz and to double-diffusive instabilities individually.  Our focus is on the diffusively 
stratified ocean regions, where relatively warm and salty water-masses are located below cool and 
fresh.  It is shown that such systems may be destabilized by the interplay between shear and 
thermohaline effects, caused by unequal molecular diffusivities of density components.  Linear 
stability analysis suggests that parallel two-component flows can be unstable for Richardson 
numbers exceeding the critical value for non-dissipative systems ( 1

4Ri  ) by up to four orders of 
magnitude.  Direct numerical simulations indicate that these instabilities transform the initially 
linear density stratification into a series of well-defined horizontal layers. 
 
1. Introduction 
This study contributes to the discussion of the origin of thermohaline staircases in high-latitude 
regions of the World Ocean.  The term thermohaline staircase describes a series of mixed layers 
separated by thin high-gradient interfaces, commonly observed in vertical profiles of temperature 
and salinity.  Staircases in the Arctic and Southern Oceans are typically diffusive, which means 
that warm and salty water is located below cold and fresh, and they often exhibit remarkable 
spatial and temporal coherence  (e.g., Timmermans et al., 2008). 

Despite the profound importance of staircases for high-latitude ocean dynamics (Turner, 2010; 
Flanagan et al., 2013) the physical cause of diffusive layering has not been fully explained 
(Kelley et al., 2003; Radko, 2013).  It is generally accepted that staircases are ultimately produced 
and maintained by double-diffusive processes.  A major challenge in the development of a 
complete theory of high-latitude staircases is explaining the initiation of layering and diffusive 
convection from smooth original distribution of temperature and salinity.  The parameter range 
for diffusive instability in the ocean is extremely narrow (e.g., Walin, 1964; Veronis, 1965): 
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 where R  is the diffusive density ratio – the ratio of vertical gradients of temperature and salinity, 

normalized by the expansion/contraction coefficients; S

T

k

k
   is the diffusivity ratio; Pr
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the Prandtl number.  Here  Tk  and Sk  are the molecular diffusivities of temperature and salinity; 

  is the molecular viscosity.   For oceanic parameters ( ~ 0.01 , Pr ~ 10 ) condition (1) reduces 
to  1 1.1R  , and this interval lies outside of the density ratio range typical for oceanic 

diffusive staircases (1.5 10R  ).  Typical internal wave energy and associated vertical shears 

in the Arctic at the staircase depth range (150-300m) are also weak (e.g., Cole et al., 2014).  As a 
result, the representative values of Richardson number (Ri) – the measure of flow susceptibility to 
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dynamic instability – are high (Ri~10), substantially exceeding the threshold value of 1
4Ri   

required for dynamic instability.  Hence, the background stratification is generally stable with 
respect to both primary diffusive and dynamic instabilities. 

To rationalize the propensity for layering in stably stratified waters, we argue that even when 
a two-component flow is stable with respect to dynamic and diffusive instabilities individually, it 
may become unstable due to the interplay between shear and thermohaline effects.  This 
conclusion is supported by a Floquet-based stability analysis for a sinusoidal velocity profile in a 
fluid linearly stratified in the diffusive sense.  Direct numerical simulations (DNS) indicate that 
the combined thermohaline-shear instabilities can indeed trigger the transition of uniformly 
stratified systems to well-defined staircases. 

 
 
2. Formulation 
The temperature and salinity fields  ,tot totT S  are separated into uniform vertical background 

gradients  ,bg bgT S  and a departure ( ,T S ) from it.  Consider the basic state representing 

unidirectional shear flow with a sinusoidal velocity profile: 
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It is assumed that the shear (2) is maintained against viscous dissipation by the externally 
imposed pressure gradient force and the governing Boussinesq equations are non-dimensionalized 
using H as the unit of length and 0U  as the unit of velocity.  The non-dimensionalization is 

implemented as follows: 
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which transforms the governing equations to 
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where 
( )

( )
bg z

bg z

S
R

T




  is the background density ratio,  
2 2 2

2 2 2 2
0 0

1
4 4

bgb
TN H gH

Ri R
U z U 

 


  


 is the 

minimal Richardson number and bN  is the buoyancy frequency,
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3. Direct numerical simulations  
Preliminary insights into the thermohaline-shear destabilization were first generated from 
numerical solutions.  The governing equations (4) were integrated in time using the dealiased 
pseudospectral method (e.g., Stern et al. 2001; Stellmach et al. 2011) with periodic boundary 
conditions applied for the perturbation fields in each spatial direction.   

Figure 1 presents a typical 2D simulation.  The chosen parameters     , , 10,2,100Ri R Pe   

define a system that is individually stable with respect to dynamic and to diffusive instabilities.  
This calculation was initiated by the basic state (2) perturbed by small-amplitude random initial 
(T,S) distribution.  The computational domain  , (64,64)x zL L   was resolved by the numerical 

mesh with 6144 6144  grid points.  The evolution of this system is illustrated by a sequence of 
temperature perturbation snapshots (Figs. 1a-d).  The instability which forms first is relatively 
small-scale – its dominant vertical scale conforms to the periodicity of the basic shear (Fig. 1a).  
In time, however, layers merge sequentially and their number reduces from 64N  at 1009t   
(Fig. 1a) to 6N  at 3968t  (Fig. 1d).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.   Two-dimensional DNS for    2, , , 2,10,10 ,0.01R Ri Pe   .  The instantaneous 

temperature perturbations are shown for 1009,  2005,  3500,  3969t   in (a)-(d) respectively. 
 
 

(a) (b)
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4. Linear stability analysis 
To systematically examine stability properties of the doubly-stratified shear flow, the governing 
equations were linearized with respect to the basic state and the solution was sought in the 
following form, suggested by the Floquet theory: 
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where   is the growth rate; k and l are the horizontal wavenumbers; and fm  is the Floquet 

coefficient, which controls the fundamental wavelength in z.  When (5) is substituted into the 
linearized governing equations and the individual Fourier components are collected, the stability 
problem reduces to the matrix form: 

  
 

A , (6) 
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and A is the    12 2 12 2N N    matrix, whose elements are functions of 

, , , , , ,fk l m Pe R Ri N .  

For each set of governing parameters, the eigenvalue with the maximum real part determines 
the growth rate of the most rapidly amplifying mode.  Extensive experimentation with the model 
indicated that, in all cases considered, the most rapid growth occurs when the Floquet factor is 
zero.  This means that the fastest growing mode of instability has the same periodicity as that of 
the shear and 0fm   will be used in subsequent calculations.  Likewise, testing the model’s 

performance for different resolutions indicated that N=100 is sufficient for an accurate 
representation of the thermohaline-shear instabilities in the considered parameter range and it will 
be employed hereafter.  Figure 2 presents the plot of maximal growth rates, in logarithmic 
coordinates, as a function of  ,Pe Ri  for various density ratios ( R ).  The reduction in R  has a 

destabilizing effect on the system.  The parameter space occupied by unstable modes tends to be 
very wide at low density ratios ( 1.5R   and 2R   in Figs. 2a,b) and contracts with the 

increasing R  ( 10R   and 50R   in Figs. 2c,d).  Likewise, the thermohaline-shear instability 

is sensitive to the diffusivity ratio (not shown).   
 

 
5. Energetics 
One of the key questions in the analysis of the thermohaline-shear instability is the ultimate 
source of energy required to amplify the unstable perturbations.  The answer to this question is by 
no means obvious.  The source of energy of Kelvin-Hemholtz instability is the kinetic energy of 
the basic shear, whereas double-diffusion is driven by the release of potential energy stored in the 
unstably stratified density component.  To identify the energy source for the mixed thermohaline-
shear instabilities, the (non-dimensional) perturbation energy equation was obtained for the 
linearized system of governing equations: 
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Figure 2.  The decimal logarithm of the maximal growth rate 10log (Re( ))  is plotted as a 

function of  ,Ri Pe  for 1.5,  2,  10,  50R   in (a)-(d) respectively for 0.01  . Only the growth 

rates exceeding 510 are shown.  Note the reduction in the intensity of thermohaline-shear 
instability with the increasing density ratio. 
 
 
 

(a) (b)

(c) (d)
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The ddP  term in (8) represents the production of perturbation energy by diffusion of heat and salt, 

shP  is interpreted as the production of energy by shear, and viscP  is the viscous dissipation.  
Finally, the individual terms in (8) were evaluated for the fastest growing normal modes 

identified using the Floquet-based analysis in Sec. 4.  Of particular interest was the relative 
contribution of double-diffusive, shear-driven, and viscous energy production/dissipation 
mechanisms.  The answer turned out to be regime-dependent.  Figure 3 shows the variation in the 
energy balance for a series of calculations in which Pe was systematically increased, whereas all 
other governing parameters were kept constant ( , , ) (2,1,0.01)R Ri   .  The relative contribution 

of various processes is quantified by plotting 
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, ,
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as a function of Pe.  These diagnostics highlight the stark differences between the low-Pe and 
high-Pe regimes, which were evident in DNS and in the linear stability analyses (Sec. 4).  For 
high Peclet numbers ( 500Pe  ) the dominant energy balance is between the energy production 
by the basic shear and its viscous dissipation.  Nevertheless, double-diffusion still accounts for a 
surprisingly large fraction of energy production (  0.55 0.65dd relP   ).  The reason for such high 
double-diffusive contribution is that much of perturbation kinetic energy produced by shear is 
immediately dissipated by viscosity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  The energy production/dissipation balances for various values of Pe.  Note the 
existence of two dynamically dissimilar regimes: (i) the high-Pe regime ( 500Pe  ) in which the 
dominant balance is between the production of the perturbation energy by shear and its viscous 
dissipation, and (ii) the low-Pe regime ( 500Pe  ) in which the energy released by the unstable 
basic temperature gradient is transferred directly into the perturbation field. 
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Dynamics of low-Pe systems are dissimilar.  The perturbation energy is produced almost 
entirely by double-diffusion (  1.05 1.1dd relP   ).  The shear-driven contribution is small 

(  0.01 0.05sh relP   ) and so is the viscous dissipation (  0.05 0.15visc relP   ).  This result, 
however, should be interpreted with caution.  Even though shear-induced effects are not strongly 
reflected in the energetics, it would be erroneous to conclude that they are largely irrelevant for 
the dynamics of thermohaline systems at low Pe.  On the contrary, the release of potential energy 
by double-diffusion is only possible due to the catalytic role of shear.  In the absence of shear, the 
smooth thermohaline stratification in the oceanographically relevant parameter regime would be 
linearly stable. 

 
6. Discussion 
Some of the most fascinating problems in instability theory arise when two independently stable 
processes lead to the destabilization of systems concurrently affected by both.  A well-known 
example of this counterintuitive behavior is the unstable system consisting of a vertically 
bounded uniform shear and bottom-heavy stratification, each of which is stable individually 
(Richardson, 1920).  Other cases that fall into the same category include the joint instability of 
rotating magnetic fields that are separately stable (Stern, 1963) and the instability of a stable 
thermal stratification in the presence of a nominally stabilizing magnetic field (Hughes and Weiss, 
1995).  Our study offers yet another example of such unexpected destabilization – the 
dynamically and diffusively stable two-component shear flows.  Linear stability analysis based on 
the Floquet theory demonstrates that shear flows can be unstable for surprisingly high values of 
density ratio ( ~ 10R ) and Richardson number ( 3~ 10Ri ).  These values greatly exceed the 

individual thresholds for both dynamic and diffusive instabilities     , 1.1,0.25cr crR Ri  .  Such a 

wide parameter range for thermohaline-shear instability includes typical parameters of the ocean 
regions characterized by thermohaline layering. 

Thermohaline-shear instability exhibits many interesting and, in several ways, 
counterintuitive features.  Depending on the parameter regime, the most rapidly amplifying 
unstable modes can be localized in low-shear or high-shear regions and yet the presence of shear 
is absolutely essential.  The thermohaline-shear instability rapidly intensifies with decreasing Ri,  
R  and  .  As with Kelvin-Helmholtz instability, the most rapidly amplifying perturbations are 

aligned in the direction normal to the flow.  The transition to fully three-dimensional patterns 
occurs only at the nonlinear evolutionary stages, characterized by the appearance of secondary 
instabilities.  Multiple lines of evidence – stemming from DNS, Floquet stability analysis, and 
arguments based on energetics – indicate the existence of two dynamically distinct regimes, 
realized for low and high Peclet numbers.  The low-Pe regime is perhaps more interesting since 
the dissimilarities with the one-component systems here are most profound.  In both cases, most 
of the energy required for perturbation growth is supplied by the unstably stratified density 
component (T).  In this regard, the thermohaline-shear instability is similar to double-diffusion, 
with shear flow playing a catalytic role in the amplification of perturbations.  In the high-Pe case, 
however, a large amount of energy is supplied by the basic shear, but this gain is compensated by 
the equivalent energy loss due to viscous dissipation. 

Finally, it should be emphasized that the effects discussed in this study should not be 
considered as merely an example of fluid-dynamical curiosity.  Fully nonlinear simulations reveal 
that the thermohaline-shear instability can reorganize smooth T-S fields into a series of mixed 
layers separated by thin high-gradient interfaces.  These structures are suggestive of diffusive 
staircases, commonly observed in high-latitude regions of the World Ocean (Arctic and Southern 
Oceans), which raises an intriguing question whether the origin of staircases can be attributed to 
the thermohaline-shear instability.  In this regard, an important caveat of our analysis is the steady 
state model of the background shear.  The steady state assumption made it possible to perform 
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formal linear stability analysis in a straightforward manner and efficiently explore the parameter 
space.  However, in the ocean, vertical finescale shear is largely associated with the internal wave 
field and therefore it is neither steady nor unidirectional.  It would be of interest to determine 
whether the thermohaline-shear instability persists in the stochastic wave-driven shears (e.g., 
Radko et al., 2015) and whether it produces layering as effectively as its steady-state counterpart. 
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