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Abstract
The notion of over-reflection has been used to rationalize the linear instability of shear
flows that are directed and sheared in a horizontal plane but stratified and subject to
rotation in the vertical. In the linear stability analysis of these types of flows, two types
of critical levels may appear that translate to singular points in the corresponding differ-
ential eigenvalue problem. The first type corresponds to the classical kind of critical level
encountered for unstratified flows whereat the phase speed of a wave matches the local
flow speed. The second type are more novel, arising where the Döppler-shifted wavespeed
matches the natural gravity wavespeed. Such “baroclinic” critical levels are chacterized
by unusual properties of reflection and transmission; we explore how this impacts linear
over-reflectional instability using a combination of WKB theory and numerical solution
of the linear eigenvalue problem. In particular, we examine how Kelvin waves riding on
the wall of a channel become unstably coupled to gravity waves propagating on the other
side of a baroclinic critical level.

1 Introduction

Stratified shear instability plays an important role in a number of contexts from geophysics
and astrophysics. The particular variety we consider here is the instability associated
with a base flow that directed and sheared in the horizontal plane, but stratified and
subject to rotation in the vertical direction. This type of instability has been explored
by, for example, Le Dizès and Billant (2009) in cylindrical geometry and Vanneste and
Yavneh (2007) for a local Cartesian tangent plane. The basic mechanism for instability
is identified as due to the over-reflection of waves with different wave action (or energy,
pseudo-momentum). Importantly, these works consider specific configurations for the
basic flow that eliminates certain singular critical levels from the linear stability analysis;
our purpose here is to reconsider how such levels can affect the stability problem.

The classical type of critical levels in unstratified shear flow are associated with the
positions where the phase speed of a wave c matches the local flow speed U(y), where,
for a Cartesian system, the background flow is directed in x and sheared in y. In linear
stability theory, these levels translate to singular points of the differential eigenvalue
problem unless the vorticity gradient of the background flow vanishes there (U ′′(y) = 0).
For the stratified shear flow problem considered here, the linear stability analysis develops
two further potential singular points at the locations where the Döppler-shifted phase
speed of the wave, c − U(y), matches the natural phase speed of gravity waves, ±N/k,
with N the buoyancy frequency and k the streamwise wavenumber; i.e. (c−U)2 = N2/k2.
In Vanneste and Yavneh (2007) and Le Dizès and Billant (2009), these “baroclinic critical
levels” are removed with a suitable selection of the basic state parameters. We avoid this
selection here, but for simplicity remove the more traditional critical level by considering
flow without a background vorticity gradient.

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 1



Despite this, critical layers are known to affect significantly wave propagation through
a vertically stratified and sheared flow: Booker and Bretherton (1967) showed that, in
linear theory, the classical critical level acts as a near complete absorber of waves. For
vertical stratification and horizontal shear, Basovich and Tsimring (1984) found that the
baroclinic critical level acts somewhat similarly, and again absorbs waves incident on the
level. However, unlike in the Booker & Bretherton problem, the baroclinic critical level
is also a reflection level for waves as well as a singular point. Moreover, a disturbance
incident from the wave-like region is absorbed but an evanescent disturbance generated
on the opposite side of the baroclinic critical level is able to tunnel through to the wave-
like region and then propagate beyond without any absorption. Such directional filtering
seems to be key in the numerical simulations of “zombie vortices” of Marcus et al. (2013),
where small vorticies excite gravity waves that travel away from their site of generation
then break at their baroclinic critical levels to generate new vortices, leading to a self-
replicating cycle.

In the present study, we examine how the baroclinic critical layers can affect the linear
over-reflectional instability of Vanneste and Yavneh (2007). We adjust the parameters of
the basic state to reintroduce these singular points into the domain and consider their
consequences; we achieve this by considering a channel flow where the location of the
boundary can be suitably chosen. Given the peculiar nature of absorption and trans-
mission at the baroclinic critical levels, we focus specifically on the situation where a
boundary on one side of the flow supports a Kelvin wave, but there is a baroclinic critical
level within the domain that allows gravity waves to propagate on the other side of the
flow. Our main goal is to show that the resulting coupling between the Kelvin and gravity
waves leads to an over-reflectional instability that is engineered by the character of wave
transmission and absorption at the baroclinic critical level.

2 Model and Governing Equations

Figure 1: Sketch of the flow geometry.

The geometry of the model flow is described by the Cartesian coordinate system (x∗, y∗, z∗)
sketched in Figure 1. The basic flow is a horizontal linear shear flow (Λy∗, 0, 0), where
Λ is the shear rate. The flow is bounded by walls at y∗ = 0 and y∗ = L. The domain
rotates around the z-axis at the rate of Ω∗, and the flow is stratified with the Brunt-
Väisälä frequency N∗ (the star ‘*’ representing dimensional variables). In the following
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analysis, we use dimensionless variables; the scales of velocity, time, length, density and
pressure are ΛL, 1/Λ, L, ρ0, and ρ0Λ

2L2, respectively, where ρ0 is the reference density
of the undisturbed flow. Thus, we set (x, y, z) = L−1(x∗, y∗, z∗) and so forth, with the
dimensionless variables appearing without the star decoration. The dimensionless versions
of the rotation rate and Brunt-Väisälä frequency are f = 2Ω∗/Λ and N = N∗/Λ.

In Boussinesq approximation, the linearized governing equations for the dimensionless
velocity field [u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)], pressure p(x, y, z, t), and density per-
turbation ρ(x, y, z, t) are

ut + yux + (1− f)v = −px, (1)

vt + yvx + fu = −py, (2)

wt + ywx + ρ = −pz, (3)

ρt + yρx −N2w = 0, (4)

ux + vy + wz = 0, (5)

where the subscripts denote partial derivatives. The boundary conditions are that there
is no flow through the walls:

v = 0 at y = 0 and y = 1. (6)

We search for normal modes, expressing the perturbations in the form,

(u, v, w, p, ρ) = [û(y), v̂(y), ŵ(y), p̂(y), ρ̂(y)] exp (ikx+ imz − ikct) , (7)

where k and m are the horizontal and vertical wavenumbers and c is the horizontal phase
speed. The amplitudes û, v̂, ŵ and ρ̂ can be expressed in terms of p̂:

û =
(f − 1)p̂′ − k2(y − c)p̂
k2(y − c)2 − f(f − 1)

, v̂ =
ik [(y − c)p̂′ − fp̂]

k2(y − c)2 − f(f − 1)
, (8a, b)

ŵ =
−mk(y − c)p̂
k2(y − c)2 −N2

, ρ̂ =
imN2p̂

k2(y − c)2 −N2
. (8c, d)

The pressure p̂ satisfies the second-order differential equation,

p̂′′ + hp̂′ + l2p̂ = 0 or p̂′′ + hp̂′ − λ2p̂ = 0, (9a, b)

with

h(y) =
−2k2(y − c)

k2(y − c)2 + f(1− f)
, (10)

l2(y) = −λ2(y) = −k2k
2(y − c)2 − f(f + 1)

k2(y − c)2 − f(f − 1)
−m2k

2(y − c)2 − f(f − 1)

k2(y − c)2 −N2
. (11)

The boundary conditions on p̂ are

(y − c)p̂′ = fp̂ at y = 0 and y = 1. (12)

From (11) we see that singular points occur at the baroclinic critical level,

y = yb ≡ c+
N

k
. (13)

We consider only one such point, 0 < yb < 1, with the other level y = yb ≡ c− N
k

assumed
to lie outside the flow domain. For simplicity, we also exclude any other turning points
where the sign of l2 = −λ2 changes. This situation corresponds to relatively large f but
relatively small N ; i.e. strong rotation but light stratification. Our main goal is to detect
unstable modes with Im(c) > 0.
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3 Solution and Discussion

Assuming that l2 � 1 or λ2 � 1, the WKB solutions of (9a,b) are

p =
1√
l

exp

∫ y

yb

−1

2
h(ξ)dξ

[
A sin

∫ y

yb

l(ξ)dξ +B cos

∫ y

yb

l(ξ)dξ

]
for yb < y < 1, (14)

p =
1√
λ

exp

∫ y

yb

−1

2
h(ξ)dξ

[
G exp

∫ y

yb

λ(ξ)dξ +H exp

∫ y

yb

−λ(ξ)dξ

]
for 0 < y < yb.

(15)
where A, B, G and H are constants to be determined by imposing the boundary conditions
and the continuity of p near the critical layer. Note that the hat ‘ ˆ ’ has been omitted
here as well as in the subsequent analysis.

The WKB solution is not accurate near y = yb, and there we need a local solution instead.
Rescaling the coordinate near y = yb,

η =
y − yb
ε

with ε =
2Nk

m2 [f(f − 1)−N2]
, (16)

we find the leading-order local equation for p:

d2p

dη2
+

1

η
p = 0. (17)

Here, ε is a small parameter, given that N is relatively small and f is relatively large.

The solution of (17) can be expressed as

p = C
√
−ηI1(2

√
−η) +D

√
−ηK1(2

√
−η) for Re(η) < 0, (18)

where I1 and K1 are the first-order modified Bessel function of the first and second kind.
Note that since we consider instability, c is complex with a very small, positive imaginary
part. Hence η is complex and the complex function f(z) =

√
z has two branches. In this

paper, we select the branch cuts on the complex plane such that

√
z =

√
|z| exp

(
i arg

z

2

)
, arg z ∈ (π, π). (19)

In this way,
√
−η is a positive real number for Re(η) < 0. Thus in (18), I1 and K1

represent the exponentially growing and decaying solutions, respectively.

For Re(η) > 0, and given our assumptions,

Im(c) > 0, Im(η) < 0, (20)

our choice of branch cuts implies √
−η = i

√
η. (21)

Substitution into (18) and using the connection formulae of Bessel functions, we find the
solution for Re(η) > 0:

p = −C√ηJ1(2
√
η)− iπ

2
D
√
ηH

(2)
1 (2
√
η) for Re(η) > 0, (22)

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 4



where J1 is the first-order Bessel function of the first kind, and H
(2)
1 is the first-order Han-

kel function of the second kind. Equations (18) and (22) reveal the important connection
between propagating waves to the right of the baroclinic critical level and the evanescen-
t disturbances to its left: the disturbance that grows exponentially on approaching the
critical level (D

√
−ηK1(2

√
−η)) corresponds to a travelling wave (−1

2
iπD
√
ηH

(2)
1 (2
√
η))

to the other side, y > yb. By contrast, the evanescent solution that decays on ap-
proaching the critical level (C

√
−ηI1(2

√
−η)) corresponds to a standing wave in y > yb

(−C√ηJ1(2
√
η)). The former implies that continuously generated travelling waves inci-

dent on the baorclinic critical level from the right are absorbed without any reflection,
much as in the Booker & Bretherton problem. On the other hand, the latter suggests
that a disturbance that is continually generated at the left-hand boundary of the channel
(at y = 0) must tunnel through to the propagation zone to the right of y = yb to generate
waves travelling in either direction with equal amplitudes.

Matching (14) in the limit of y → y+b to (22) in the limit of η → +∞, and then matching
(15) in the limit of y → y−b to (18) in the limit of η → −∞, provides the connection
formula,

G

H
=

(
B
A

)2 − 1 + i
(
1 + B

A

)2
1 +

(
B
A

)2 . (23)

Substitution of (14) and (15) into the boundary conditions in (12) also provides the
relations,

c

(
1

2λ

dλ

dy
+ λ+

1

2
h

)
y=0

− f =

[
c

(
− 1

2λ

dλ

dy
+ λ− 1

2
h

)
y=0

+ f

]
G

H
exp−2

∫ yb

0

λ(ξ)dξ,

(24)

B

A
=
−f tan

∫ 1

yb
l(ξ)dξ + (1− c)

[
−1

2

(
1
l
dl
dy

+ h
)

tan
∫ 1

yb
l(ξ)dξ + l

]
y=1

f + (1− c)
[
1
2

(
1
l
dl
dy

+ h
)

+ l tan
∫ 1

yb
l(ξ)dξ

]
y=1

. (25)

Equations (23), (24) and (25) combine into the dispersion relation for the phase speed c.
The solution can be further simplified by noticing that the term on the right side of (24)
is exponentially small: to leading order, we then find c ≈ c0 with

c0

(
1

2λ

dλ

dy
+ λ+

1

2
h

)
y=0, c=c0

= f. (26)

This leading-order phase speed corresponds to a Kelvin wave riding on the left-hand wall
of the channel. Because c0 is real, no instability is yet evidenced. To obtain instability,
one needs to take into account the effect of the exponentially small terms on the right
hand side of (24). Evaluating these terms using the approximation c ≈ c0 leads to

c

(
1

2λ

dλ

dy
+ λ+

1

2
h

)
y=0

− f (27)

=

[
c0

(
− 1

2λ

dλ

dy
+ λ− 1

2
h

)
y=0, c=c0

+ f

](
G

H

)
c=c0

exp−2

∫ yb

0

λ(ξ)c=c0dξ,

from which one can extract the phase speed including the corrections, which leads to an
exponentially small growth rate.
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The asymptotic solution presented above can be verified by a numerical simulation to
(9), utilizing a shooting iteration method: at y = 1, an initial guess for c given by the
asymptotic solution is used to determine p′ for a prescribed p according to the boundary
condition (12). These are used as initial values to integrate equation (9) leftward. At the
left boundary y = 0, the error in the boundary condition (12) provides a discriminant
that can be used to revise c, and the process repeated in the usual manner of Newton
iteration until the error of boundary condition (12) at y = 0 is sufficiently small. An
example of the results is given in Figure 2; the WKB and numerical solutions agree well
with one another.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0- 1 5 0

- 1 0 0

- 5 0

0

5 0
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1 5 0
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  n u m e r i c a l  R e ( p )
  n u m e r i c a l  I m ( p )

y

p

i n t e r n a l  g r a v i t y  w a v e s

Figure 2: Sample numerical and WKB solutions for N = 0.05, f=3.8, m = 1 and k = 1. The phase
speed c obtained from the asymptotic analysis is 4.28× 10−2 + 2.52× 10−9i, whereas that obtained from
the numerical computation is 4.03× 10−2 + 2.71× 10−9i.

To provide a physical interpretation of the preceding result, we first note that, without
the left-hand boundary at y = 0, the exponential decay of p to the left of y = yb demands
that the local solution near the critical level must be D

√
−ηK1(2

√
−η) alone. But the

left-travelling wave that this corresponds to for y > yb cannot form a normal mode. Thus,
the region yb < y < 1 in which internal gravity wave may propagate cannot support
normal modes by itself, owing to the character of transmission and absorption at the
baroclinic critical level.

On the other hand, the presence of the left-hand wall permits the existence of a exponen-
tially localized Kelvin wave riding on that boundary. This disturbance can tunnel through
to the propagation zone beyond y = yb to couple to travelling gravity waves. As discussed
by Vanneste and Yavneh (2007), the existence of a classical critical layer between y = 0
and y = yb implies that the Kelvin wave and the internal gravity waves have opposite
signs of wave action or energy. Thus, the coupling is expected to lead to instability.

A crucial difference of the current instability mechanism with that arising in the problem
considered by Vanneste and Yavneh (2007) concerns the conditions under which one
expects unstable modes to appear: for Vanneste and Yavneh (2007), the left-hand border
of the the gravity-wave region is a regular turning point (reflection level). The Kelvin
wave riding on the left wall can only then couple with the gravity waves when those modes
almost satisfy a resonance (quantization) condition of their own. For the current problem,
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however, the absorption of the left travelling wave at the baroclinic critical layer effectively
removes the need to satisfy any resonance condition over the gravity wave region. The
situation is more like the problem considered by Le Dizès and Billant (2009), in which
gravity waves are free to radiate away from the turning point and constitute a continual
loss of the opposite sign of wave action.
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