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Background \ Radiative Transfer-Based Effective Emissivity (after Nalli et al. 2018a,b) K Need for Upgrades to the IRSSE \
Model

« For satellite IR remote sensing applications, The directional emissivity of a terrestrial The conical-directional reflectance for non- Then, defining an effective emissivity as + CRTM IR effective-emissivity (IRSSE) model was
the surface emissivity/reflectance spectrum surface is defined as isotropic incident radiation (Nicodemus et al. 1977) _ derived based on high-accuracy surface-based
must be specified with a high degree of Lato0) for the sea surface reflectance may be written as &) = 1= pu[Oc(00)], FTS observations (MAERI), sound theoretical
absolute accuracy & (00) = Lus (0 L . . principles, and the need for practical
— 0.5% uncertainty results =0.3-0.4 K systematic error in B,(T.) //ﬂ 0:00) P (6. 00:02) [B, (1) — I:(0)] o dp where the mean incidence angle is the equivalent of an implementation within the CRTM

LWIR window channels v Pn n0030,) [ 5w . n Gftn - teek = :
SN . : 5 effective emission angle, ©; = ©,, one may arrive at a — Model was shown to have significantly better

IR sea-surface emissivity models have Wwhere the su.rface-emltted radiance / P(0,.00:02) [B,(T2) = 12(0)] dgy, dpin simplified RTE for the SLR agreement with observations over the conventional
gained widespread acceptance (e.g., Masuda (numerator) is separated from the surface- o % models (e.g., Masuda 2006; Wu and Smith 1997)
et al. 1988; Watts et al. 1996; Wu and Smith leaving radiance (as measured by a detector) . . . R,_‘(G(') =& (0“) B;(Ts) + [1 - S/(G())] ]}(()n) . — However, small residual deficiencies were still found to
1997), but only after they were validated by subtracting the surface-reflected radiance which, from the mean value theorem is equivalent ! v ' ! ! exist under certain conditions
~ Masuda's model was published in 1988, but no one used to

pulbo.02) =

5 5 n The effecti . defined is th val * For example, small residual positive biases were found in the SWIR
2y — .. T e oY = =) v indow, 11 35 LWIR under d Id at h dits
it because it was never validated against observations . ) pu(00,0%) = pu(0,,.9,:00:0%) = pu[0i(6p), 0] e effective emissivity as defined is thus equivalent to onas el R ;ﬁc.‘m:b:::;.:.:;::av'oﬂs
— Marine Atmospheric Emitted Radiance Interferometer La(00) = Rus(00,0) =~ .[[,,,(11_ @i B0, 0) 1} (6. 0) cos(0) sin(0) dpdo &(00) = Ry,4(60) — 1} (60) simplicity (and was not supported for continued work)

(MAERI) (smith et al. 1996; Minnet et etal. 2001) led to The denominator simplifies as v B, (Ty) — I} (60)

an model

. . . . . . More importantly, however, was the realization
mean of 1 p of surface wave facets P:;mPl:«n.eAngr:xlr?ﬂ;n / / P(0,,.00:02) [BATy) — 1}4(9)] dgy dpin T'he effective emission angle (:)e is det.er.mllned. iteratively of a significant temperature dependence

~ The models were improved, but residual systematic SRS e via least-squares SPeCt"al variance minimization ~ Nalli et al. (2008b): “In agreement with other recent
discrepancies (0.1-0.4 K) remained at higher wind » = B,(T,) - 1}6.), s 2 work on the subject, we found a slgnlfcant temperature
speeds and view angles 240° (Nalli et al. 2001, 2006; - o?(Av) = —— Z [T0s(0e) = Tou(©0)]” which, if d for, can lead to
Hanafin and Minnett 2005) due to incorrect specification N\ ~ = . . .. . spectral SLR errors of the same order of magnitude as
of reflected atmospheric radiance > where 6, ~ 0, is a diffusivity angle, thus allowing those we have sought to correct. Therefore, additional

simplification of the surface-leaving radiance RTE where T,5(@,) is the skin temperature given by work is desirable to derive an optimal seawater
QunshSpaclae tambertan refractive index dataset...”

& . Al v, 1
2 f \! as = = T,s(©c) = B! (M) — Unfortunately, this work was not supported at the time

eilted bl

— These models asthe

= st SN wip =
Rys(Bo) By(T:) = pu(©:, Ny) [B"(T“) 1 ((i/,)] 1-p.O,N.) — However, the recent findings of (e.g., Liu et al. 2017)

By(T,) = pu(©c, N,) [Bu(T,) — 1}(60)] The retrieved 0, can then be used to derive the entire revealed significant system: s (as much as 1K) on
% et a global scale, thus bringing this issue back into focus
effective emissivity spectrum. for support
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From Liu et al., JCSDA Workshop (2017) * Temperature dependence * Improvement to known residual biases in current
ity Difference (RTTOV - CRTM ) _ crivM v ~ Refractive indices with temperature dependence are one model (viz., the SWIR window)
r e ZE5 B In window channels, the possibility, however s i 5 the LWIR
R el * Newmanetal. (2005) is limitedto a portion of the LWIR and SWIR i the one-size-fits all h) and
* Hale etal. (1972) is limited to 2 useful surface temperatures. include T;parameter for improved global fitting

— Thus the tentative plan is to use data from Pinkley et al. (1977) ~ Use latestversion of LBLRTM and use additionalatmospheres The views,

_— e . — From the spectral ion of T;, deri ut inthe trainingsample

et a7 RS fokedale 1. L=, Efp Gy T). Dovetail efforts with ongoing NUCAPS emissivity . J
polar regions Vol 5 ~ Validate usingglobal data (e.g, Liu et al. 2017) as well as new retrieval development and SARTA model upgrades /

(window channels) 2 MAERI campaigns-of-opportunity (e.g., Gero et al. 2016; Nalli
OME @ 12045 em! et al. 2008b)
= Collaboration with UW/CIMSS and UM/RSMAS
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From Nalli etal. (20080) + Global OBS - CALC double-differences
— 2-weeks global NOAA-20 CrIS data (OBS)
/ \ versus CRTM model calculations (CALC)
~ Shown are microwindow-channel double-
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Notably, the IRSSE model uses the effective « Significant surface-temperature
emissivity principle to account for quasi-specular dependence is clearly visible on the
reflection in a practical manner order of 1K
JCSDA has agreed to support (beginning Sep 2019) — Thisis of first order significance within the
an upgrade to the CRTM IRSSE model as part of their ﬁz:(:r::; f‘;hemta'CRTM forwsrdimode] P e £ s
2019 Annual Operating Plan V""“‘”"” et
— The plan is to include surface temperature dependence y
along with some other misc upgrades ) s Corresponding Authar:
K 1PSS will support in-kind work until Sep 2019 / . NOAA Corer for Westhsamd Chme. Prsion (NEWEP)
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