SCRIPPS INSTITUTION OF OCEANOGRAPHY

UC San Diego

Abstract

Low level water vapor transport over the California coastal mountains has been shown to be highly correlated with the maximum precipitation in the coastal mountains in wintertime Pacific storms, where the dynamics are dominated by a low level jet ahead of the cold front associated with a mid-latitude cyclone (Neiman et al., 2013). In these cases with relatively simple dynamics driven by the orographic precipitation mechanism, water vapor transport can be quantified as the integrated water vapor multiplied by the mean wind speed in the controlling layer at approximately 1 km above the surface. Here we investigate how closely ground-based GPS measurements can track the rapid acceleration and deceleration of onshore moisture flow by comparing them to a unique dataset of rapidly launched radiosondes in several atmospheric river (AR) events in January and February 2017 carried out by the Center for Western Weather and Water Extremes (CW3E). In particular, we focus on an increase in ZTD corresponding to 16 mm of Integrated water vapor (IWV) over 21 hours on February 7 was measured the day the damage to the spillway at Oroville Dam in northern California was detected.

Objectives

- Investigate the GPS data analysis options that impact rate of change of IWV
- Optimize the GPS data analysis options using 3 hourly radiosondes launches
- Review empirical relations among IWV, upslope water vapor flux, and precipitation
- Examine the sensitivity of topographic precipitation estimates to GPS IWV accuracy

The results may be used to assess the value of dense observations of GPS ZTD available in California for real-time verification at hourly time resolution for atmospheric river events that would provide increased confidence in short term precipitation forecasting.

Synoptic situation

The synoptic situation on 6 February 2017 is shown below. A sequence of several consecutive low pressure centers directed moisture into northern California. This event had a typically long duration precipitation contributing to the overflow at Oroville Dam.

SHS-BLU (250°-070°)
CCO-FOR (250°-070°)
CCO-STD (160°-340°)

8 6 4 2 0 -2 -4 -6 -8 -10 -1 ← Hours from SBJ core at SHS

r = 0.962

16 20 24 28 32 36 40

Correlation between IWV flux and precipitation rate over the

time +/- 12 hours of the IWV

maximum for a composite of 13

AR cases (Neiman et al., 2013).

Integrated Water Vapor

Integrated Vapor Transport

Rapid changes in onshore moisture transport

Sensitivity testing in GAMIT GPS data analysis

Parameters that must be chosen in the GPS data analysis method may have an impact on the time resolution of rapid changes in Zenith Tropospheric Delay (ZTD) solution and IWV:

- against data fit.
- 2) ZTD solution interval (15, 30 or 60 min) Solution to include ZTD gradient to account for spatial variations in
- moisture above a site.

ZTD gradients included ZTD solution interval

All tests were implemented with 15-min ZTD interval, 10-degree elevation cutoff, 24-hr sliding window, and SOPAC dynamic reference frame.

Using rapid radiosonde launches during extreme changes in water vapor transport during atmospheric **river events to optimize ground-based GPS ZTD solutions** Hong Liang^{1,2}, Jennifer S. Haase¹, Michael J. Murphy¹, Anna Wilson¹, Marty Ralph¹

1. Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093-0225 (jhaase@ucsd.edu) 2. Meteorological Observation Center, China Meteorological Administration, Beijing, China, 100081

1) ZTD variance constraint balances how rapidly changes can occur

Dama \manua	f			T	Cred	701	7-02	702	7-04	7-01	7.0
Para.\name	cntr	cexp	тарт	Ionm	Grad	ZVUI	ZV02	ZVU3	Zv04	Zc01	
Choice of experiment	Relax	Baseline	Relax	Rel							
Zenith delay constraints (m)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.25	0.7
Zenith delay variation (m/sqrt(hr))	0.02	0.02	0.02	0.02	0.02	0.005	0.01	0.05	0.10	0.02	0.0
Atmospheric horizontal gradients	none	none	none	none	yes	none	none	none	none	none	nor
Dry map function	GMF	GMF	VMF1	GMF	GM						
Wet map function	GMF	GMF	VMF1	GMF	GM						
Ion model	GMAP	GMAP	GAMP	NONE	GMAP	GMAP	GMAP	GMAP	GMAP	GMAP	GM.
orbit	Final	final	final	final	final	final	final	final	final	final	fin

ZTD variance constraint

Implications for the relationship between bulk upslope IWV flux and rain rate

Correlation of GPS derived PW and upslope IWV flux with rain rate is stronger than that derived from radiosondes during rainfall events. The key is to identify that an event is underway, which limits use as a predictive tool. However, GPS IWV and expanded GPS ZTD dataset would provide added value for real-time verification and data assimilation.

Conclusions

A ZTD variance constraint of 0.02 m/sqrt(hr) best captures the rapid ZTD changes associated with AR events without introducing spurious variations.

Peak values are overestimated by radiosondes possibly because of strong upslope winds blowing them into higher IWV areas.

Little difference is seen in GPS ZTD solutions that include gradients.

A shorter solution interval of 15 min provides small improvements over larger intervals. Using the optimal GPS ZTD variance increases the correlation of GPS IWV with radiosonde IWV and also the correlation of bulk upslope IWV flux with hourly rain rate.

References

Neiman, P. J., Hughes, M., Moore, B. J., Ralph, F. M., & Sukovich, E. M. (2013). Sierra barrier jets, atmospheric rivers, and precipitation characteristics in Northern California: A composite perspective based on a network of wind profilers. Monthly Weather Review, 141(12), 4211-4233. Haase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. Journal of Applied

Meteorology, 42(11), 1547-1568 Ralph, F. M., Coleman, T., Neiman, P. J., Zamora, R. J., & Dettinger, M. D. (2013). Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. Journal of Hydrometeorology, 14(2), 443-459.

Acknowledgements

We thank CW3E and its sponsors (Department of Water Resources, Army Corps of Engineers) for providing access to the radiosonde data from Calwater 2017. Data sources: Precipitation from CNRFC, model fields from ECMWF, GOES composites from SFSU, wind speed and precipitation data from NCDC and NOAA ESRL. HL was supported by CSC grant 201605330006.