Abstract

This study is an investigation into whether the GPS Radio Occultation (GPSRO) technique can be used to obtain the electron (Te) and ion (Tt) temperature in the thermosphere. Currently, Incoherent Scatter Radars (ISR) are one of the most reliable and long-term sources of topside ionospheric electron density and plasma temperature information. However, a shortfall of using the ISR databases is the relatively low number of ISR stations around the world. In contrast, GPSRO provides topside ionospheric electron density data from all over the world, but Te information is not directly detected. Previous researchers have investigated the relationship between the electron density and the plasma temperature, but these studies have not explicitly considered some parameters that are known to influence the plasma temperature; such as, solar and geomagnetic activity level.

This study uses an Artificial Neural Network (ANN) technique to create a new topside electron temperature model that has been trained using 7 years of ISR data from two stations; Arecibo (low-latitude) and Millstone Hill (mid-latitude). This model was trained using electron density profile information (e.g. vertical scale height, HmF2 and NmF2) and solar and geomagnetic activity (F10.7 and Kp, respectively), and the model provides Te profiles. This modelled relationship between the electron density profile and the electron temperature profiles thus allows the extraction of electron temperature information from the GPSRO electron density profiles. This model’s GPSRO electron temperature profiles are validated against out-of-sample ISR data, and a comparison of the GPSRO results versus the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) is conducted. It is found that the electron temperature profiles from the ANN had a relative accuracy of 95% in the low-latitude region (i.e., against Arecibo data), compared to 90% in the mid-latitude region (i.e., against Millstone Hill data). Finally, a statistical analysis of the diurnal electron temperature profiles obtained from GPSRO are shown to agree well with the TIEGCM outputs in low-latitude regions.

Te profile comparison

The comparison between the ANN model result and IRI result (Brace, 1978) (w.r.t. out-of-sample measurements) is shown in Fig. 6, which implies that the proposed model significantly outperforms the the model inside IRI in all epoch of a whole day.

Te comparison with physics-based modelling result

The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM), a self-consistent physical thermosphere-ionosphere model, is used as a reference to test the outputs of the modelled Te from IRO data.

The figure below reveals that with enough IRO data, the IRO-based model shows similar tendencies (in the box-highlight part) to the TIEGCM results (e.g. morning and evening peaks).

Conclusion & Future Work

This study generated Te from IRO measurements based on ANN training using ISR data. The out-of-sample measurements and the TIEGCM results are used to assess its performance. In conclusion,

1) ANN can be applied to quantitatively and accurately describe the relationship between Te and ionospheric electron density profile parameters.

2) The model-derived Te shows similar diurnal and seasonal variations compared with the TIEGCM model outputs.

Currently more IRO satellite missions are ready to launch (e.g. COSMIC-2, GNOS-2, etc.), thus the number of RO data will increase and so will the number of Te measurements. Our future work will focus on extracting Ti from IRO electron density profiles for future space weather studies.

Acknowledgments

The first author also acknowledges the China Scholarship Council (CSC) for providing a scholarship for studying at the SPACE Research Centre, RMIT University. This work is supported by the Australian Research Council (ARC) Hot-M-RMIT linkage project (ID: RE-02677-011). We thank UCAR/CDAAC for providing RO electron density data.

ANN methodology

Modelling methodology

Fig. 1 The variation of electron/ion/neutral temperature (Te/Tn/Ti) wrt altitude, and the study area of altitude

Fig. 2 Definition of vertical scale height (VSH) for a ln (Ne) topside profile

Fig. 3 Structure of the ANN

Fig. 4 Flowchart of the ANN methodology

Fig. 5 Flowchart of the proposed Te model (in this study, Arecibo, one of the ISR stations in low latitude, is adopted as measurement was selected as sample data)

Fig. 6 The assessment of ANN model in each epoch (6, 12, 18 local time)

Fig. 7 Comparison between the model-derived Te from IRO data and the Te generated from the TIEGCM, together with the number of IRO data as a function of local time and height, at March equinox, June solstice and Dec solstice