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E2E simulator – How did we get there ?

Dataset for optimisation of tracking 
strategies for RO 

Mar-2012 (DMI, ECMWF, RUAG)

EUMETSAT funded

ESA funded

Used to develop 
MetOp-SG

(RUAG)

Used in GOPALS
Mar-2015, 

(RUAG) 

PART I

Paves the way to 
design ORORO or 
Spire-type or ?

MetOp-GRAS a/b/c
MetOp-SG GOPALS

Consolidation of future RO critical 
elements

Jan-2015,  (RUAG) 
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Two key questions ?

How can we model/understand the error sources (Rx & inversion 
algorithms)? 

• Developing an End-2-End simulator that gives a truth against to 
compare, including realistic data sets.

How can we assess the impact of increasing the number of RO 
measurements available? 

• Background: improvements in MetOp-SG, Rx for multi-GNSS signals, and 
also Cicero-GeoOptics, Spire, Planet...

• Ensemble Data Assimilations (EDA) vs. Observation System Simulation 
Experiments (OSSE).

• New questions arising: do RO systems of reduced performance contribute 
equally?
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E2E  simulator  scope
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Zoom on the Coded Signal Module (CSM)
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- 0 - Atmospheric excess carrier range
- 1-2: Geometric pseudorange (linear distance) of the signal
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Comparing EDA & OSSEs

OSSEs: simulate all observations from a known truth - the nature run. 
• The simulated observations are assimilated into an NWP system, and individual 

analysis and/or day “n” forecast errors, ε, can be computed because the 
truth is known (nature run). 

• The statistics of the analysis/forecast errors can be computed by averaging 
errors, ε,  over the experiment.

EDA: We directly estimate the analysis and forecast error covariance matrices
• The PDF of the errors rather than the actual forecast errors - based on the 

assumed observation/model error statistics.

• The EDA is an error propagation exercise. 
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Example: EDA based GNSS-RO impact 

• Aim to investigate ensemble spread as a function of GNSS-RO number.
• Identify, if and when the impact begins to “saturate”.
• This was the output of the ESA Study with ECMWF called:

Estimating the optimal number of GNSS RO measurements for NWP and 
climate applications 

Assimilation window

Analysis Forecast Time

va
ria

bl
e

Number of GNSS RO profiles

“Saturation”

ED
A 

sp
re

ad
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EDA analysis – How did we get there ?

Impact of Different RO Constellations on NWP and 
Climate Monitoring

2015 (ECMWF)

EUMETSAT funded

ESA fundedEstimating the optimal number of GNSS RO 
measurements for NWP and climate applications 

Nov-2012 (ECMWF) 

Using an EDA to assess the impact of GNSS RO 
from ORORO nano-satellites 

Nov-2016 (ECMWF)

Impact of low-cost GNSS RO instrument in the 
Troposphere

Ko=June-2017 (RUAG & ECMWF)

Paves the way for
evaluating

ORORO or Spire or 
?

E2E

simulator
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Impact of Different RO Constellations on 
NWP and Climate Monitoring (2015)

Scen
ario

LEO Satellites GNSS 
Satellites

Info

4 EPS-SG A1, B1 GPS, Galileo 2 EPS-SG satellites, about 2,800 occultations /day

6 EPS-SG A1
RO-Night GPS, Galileo 2 RO satellites, about 2,800 occultations/day; check 2 RO in one orbit plane to 2 RO in different ones

7 EPS-SG A1, B1
GPS, Galileo

GLONASS
BeiDou

2 EPS-SG satellites, about 5,100 occultations /day; maximum number of occultations in one orbit, is a
saturation visible in one orbit?

8 EPS-SG A1, B1
COSMIC-2 Eq

GPS
Galileo

2 EPS-SG satellites, 6 COSMIC-2 Equator satellites, about 10,500 occultations/day; check impact of few
occultations at high/mid latitudes

9
CORE

EPS-SG A1, B1
COSMIC-2 Eq + Po

GPS,Galileo
2 EPS-SG satellites, 6 COSMIC-2 Equator satellites, 6 COSMIC-2 Polar satellites, about
18,000 occultations/day + 16, 32k and 64k observ. with 2 and 3 urad error observ.

10
EPS-SG A1, B1

RO-Night
RO-Early Morning

GPS, Galileo
4 RO satellites, about 5,400 occultations/day; check 4 RO coverage compared to COSMIC-2
Polar, Equator

11

EPS-SG A1, B1
COSMIC-2 Eq

RO-Night
RO-Early Morning

GPS, Galileo
10 RO satellites, about 13,300 occultations/day; check how 4 sun-synchronous RO satellites
compensate for no COSMIC-2 Polar

13
EPS-SG A1, B1

Sentinel-6
GPS, Galileo 2 EPS-SG satellites, one Sentinel-6 (Jason-CS) satellite, about 3,800 occultations/day

14
EPS-SG A1, B1

COSMIC-2 Eq, Po
Sentinel-6

GPS, Galileo
2 EPS-SG satellites, 6 COSMIC-2 Equator satellites, 6 COSMIC-2 Polar satellites, one Sentinel-
6 (Jason-CS) satellite, about 19,000 occultations/day

15

EPS-SG A1, B1
COSMIC-2 Eq, Po
Sent.6, LEO-1,2,3 

(06:00,10:30,13:30)

GPS, Galileo
2 EPS-SG satellites, 6 COSMIC-2 Equator satellites, 6 COSMIC-2 Polar satellites, Sentinel-6
satellite, one early morning LEO, one in close by EPS-SG orbits, one in early afternoon orbit,
about 22,800 occultations/day
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32 km

16 km

48 km

Using an EDA to assess the impact of GNSS RO 
from ORORO nano-satellites (2016)

Temperature spread values
Globally averaged, but the 

hemispheric results are similar. 

The core observations produce a big 
reduction in spread, but the ORORO 

clearly have some impact up to 1 hPa. 

core+nK core

core

EDA -EDA100
EDA

´

Largest impact of ORORO between 
100 hPa to 10 hPa, but clearly some 

impact up to 1 hPa. 

Spread reduction with 64k ORORO
- 25% at 100 hPa
- 15% at 1 hPa

Core = 18k occ. with 0.5 urad BA error
Others with 2 or 3 urad BA error 

Will ORORO perform as well in the troposphere? What limits 
tropospheric impact? Receiver or Retrieval? 
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ORORO Mission concept

GNSS-R 

PART II
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Increase temporal resolution for impact on NWP

GNSS-Reflectometry (Sea Wind & Sea State) 
Too early for impact, but very promising results from using UK TDS-1 mission by UK National 
Oceanographic Centre (G. Foti et al. GNSS-R 2017)

GNSS Radio Occultation
ECMWF latest results from ESA study as shown before.
The Impact of different RO Constellations on NWP, S. Healey, Oct. 2016, ESA Ctrct 4000116920
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Requirement drivers

Revisit time
- RO: Large number of occultations, target 100,000 (MetOp sees ~700 occ./day)

- GNSS-R: 6 to 12 hours for Global NWP & Climate Monitoring < 1% gap equator
à Recommendation to have 3 planes x 10 nanosat per plane, each < 30 kg

Good measurements à good SNR à Reasonable antenna size à 3x3x3 (27U) CubeSats

Solar Arrays

S or X-band downlink

RO antenna:  3x1 Cubes: 30 cm x 10 cm (3x2 orig)

GNSS-R antenna: 3 x 2 Cubes  (very similar to TDS-1)
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Antennas:  RO, GNSS-R (~13 dBi), POD 

GNSS-Receiver (study funded by EOP started in Q1-2017)
• One board GNSS-RO (2 µrad target) + GNSS-R + POD & planning of observations.
• No redundancy at satellite level (redundancy is at constellation level).

ORORO Payload (SSTL)

GNSS signals
• Minimum is GPS + Galileo (goal is also Beidou and Glonass)

• GNSS-R: only L1 (for scatterometry, but dual-freq. for extension to altimetry)
• GNSS-RO: dual frequency (L1, L5)  - POD also dual freq.

See:  http://smosstorm-project.oceandatalab.com/files/Workshop/Session%206%20-Future/ORORO%20Met%20Office%2016%20v2.pdf
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Impact of low-cost GNSS RO instrument 
in the Troposphere
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!

55 cases 
ECMWF 
profiles

ESA study - Kicked Off in June-2017  (RUAG + ECMWF)

PART III

Useful for:
• RUAG to miniaturize their RO instruments in hosted 

payloads (e.g. Sentinels or Earth Explorers) or cubesats.

• Also scientifically  (upcoming Spire, Planet, ORORO, etc) 

Address questions like:
• Optimal design for MQ: impr. USO clocks, antenna less 

elements, impr. front end, higher integration (e.g. LNA)

• Compute BA error (for the 55 profiles) for High-Quality 
(HQ) and Medium-Quality (MQ) receivers. BA profiles 
from a WO/FSI inverse through a 2D field. 

=> error contribution from Rx or retrieval?
• Do we lose the signal earlier (high SLTA) with MQ-Rx?
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Impact number antenna elements azimuth

% out of 700 total /day /const.Azimuth distribution occultations

±
55

de
g
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MQ RO Performance with improved clock

Assumptions
HLEO  500 km

USO_AD_GNSS 1e-12
USO_AD_LEO 5e-13

RF_LO_PN_1Hz -50dBc/Hz
TargetH  35 km

L1/L5 frequency

Main contributors:
• Thermal->SNR->gain (antenna size)
• Clock technology (phase noise, ADEV)

RO Accuracy

BAError 0.93 µrad
close to METOP-SG
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Acq. & tracking RO with small antenna

source: 3 el Gopals/RUAG
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Next Generation of AGGAs

Top priority is to use AGGA-4,  but:
• it takes years to get a good ASIC, 
• and we’re getting enough feedback to start 

thinking of AGGA-next

PART IV

AGGA-5 Feasibility study tasks
(Q3-2017)

Development activities will come
at a later stage.

AGGA-5 considerations:
• Possibilities for further integration using more 

gates with deep sub-micron
• As a result put more channels & frequencies

• Two types of applications:
• Navigation: POD post processing & RT

• Scientific: GNSS-RO, GNSS-R and Others

Timeline target dates:
• First FPGA Prototype 2020
• First ASIC Prototype 2022 (if needed)
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AGGA-4 History

AGGA-2 (Advanced GPS/Glonass ASIC)
• Started in ~1995 and manufactured by Atmel [T7905E standard component] in 2000.
• Targeted to EO applications: POD, Radio Occultation (RO) and Attitude Determination.
• Used successfully in many missions (RO in bold):

• ESA:  e.g. MetOp-Gras a/b/c for RO, GOCE, Sentinels 1/2/3, Swarm, 
EarthCARE, etc.

• Non-ESA: e.g. ROSA in Oceansat-2 & MeghaTropiques, SAC-C &D, 
Radarsat-2, Cosmo-Skymed

AGGA-4 (Advanced GPS / Galileo ASIC)

• New scientific requirements and experience 
• New enhanced GNSS signals (GPS / Galileo / Compass-Beidou / Glonass) 
• New .18µm ASIC technology allows more on-chip integration (e.g. LEON-µproc)
è Used in :

• ESA: MetOp-SG (RO+P/F), S1c/d, S2c/d, S3c/d, S6, Biomass, Proba-3, 
Neosat, ...

• non-ESA: CSO, SARah,  Comp.Adv Sat.500,  Vega-C, SAOCOM, ...
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Application: GNSS-R Scatterometry

GNSS-R  Scatterometry  (TDS-1, NASA’s CYGNSS, part of GEROS-ISS) for wind speed
• Delay Doppler Maps (DDMs) of reflected-only signal and relying on open loop (4 in TDS-1)
• Delay = Range  è 128 (32 chips) correlators needed in TDS-1
• Doppler = Time Derivative of Range è 20 cells in TDS-1 (500 Hz each)

• PLL not useful in open loop, using single frequency
• Optimal scheme for Doppler not present in AGGA-4 à needs to be added
Ref: Final Report with SSTL of ESA Contract. 4000106450

TDS-1 (150 kg) CYGNSS (20 kgr)

Launch Jul-2014 Launch Dec-2016
SSTL NASA

Doppler 
curves

Range
Delay

curves 

Windier

Scatterometry
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Application GNSS-R Altimetry

GNSS-R Altimetry: more complicated (former PARIS)
• Cross-correlation with direct signal (not with replica) is required 

• à More complex  (TBC if feasible for AGGA-5)

!

GEROS-ISS
• Currently in Phase-A (launch planned for 2020)

• Aims at GNSS-R altimetry  (1st objective)
• Also at GNSS-R scatterometry (2nd objective)
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Integration and enhancements

On Chip 
SRAM?

More CPU Power & 
distributed cores ?

Bigger FFT sizes?

LNA&mixing On chip?

Deep submicron
technologies and 

FPGA?

Faster 
Acquisition

More channels

More signals

Distributed 
aiding 

processors?
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Conclusion

• Long experience with METOP GRAS & METOP-SG
• Simulations & EDA analysis show there is still room for 

additional RO besides METOP, COSMIC-1/2, SPIRE, etc.

ESA develops new concepts for integration of RO 
instruments in:

• Dedicated nano-satellites
• On board computer on future EO satellites

AGGA-5 device new requirements investigated:
• POD and GNSS-RO remain the driver
• Additional applications studied like GNSS-R.
• New technology is faster, enables more channels, more flexible

THANK YOU


