

Global Navigation Satellite System Occultation Sounder II (GNOS II)

Weihua Bai^{1,2}, Yueqiang Sun^{1,2}, Qifei Du^{1,2}, Xianyi Wang^{1,2}, Congliang Liu^{1,2}, Junming Xia^{1,2}, Xiangguang Meng^{1,2}, Dongwei Wang^{1,2}, Yuerong Cai^{1,2}, Danyang Zhao^{1,2}, Chunjun Wu^{1,2}, Wei Li^{1,2}, Cheng Liu^{1,2}

1 Laboratory of Space Environment Exploration (LSEE) Beijing Key Laboratory of Space Environment Exploration National Space Science Center (NSSC), CAS, Beijing, China 2 Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC) of NSSC/CAS, Beijing, 100190, China, and University of Graz, A-8010 Graz, Austria (lcl@nssc.ac.cn)

GNSS RS Group, NSSC

- Research domains:
- GNSS radio occultation (GNSS RO)
- GNSS reflectometry (GNSS-R)
- LEO-LEO microwave occultation (LMO)
- Research Goals:
- To develop occultation and GNSS-R instruments
- To apply the GNSS remote sensing data
- Research partners:
- China Meteorological Administration (CMA)
- Institute of Atmosphere Physics (IAP), CAS
- Wegener Center for Climate and Global Change (WEGC)
- Geo Forschungs Zentrum (GFZ)
- Institut d'Estudis Espacials de Catalunya (IEEC)
- RMIT University

Researchers in GNSS RS Group

Researchers in GNSS RS Group and Prof Gottfried Kirchengast

Researchers in GNSS RS Group and Prof Martin-Neira

SEE Nese Operational and future missions

> The following FY-3 satellites will carry GNOS II as a key payload...

Instrument products

GNSS RO Receivers

FY3 GPS/BDS compatible flight model

FY-3C/D GNOS

FY-3E GNOS II

GNSS Reflection Receivers

FPGA+DSP GPS/BDS/GALILEO compatible ocean reflection receiver

Main characters: •GPS/BDS/GAL for RO •GPS/BDS for GNSS-R Status: Design

LMO Transmitters and Receivers

YH-1 RO receiver flight model for Mars

LMO transmitter receiver for Earth

Antenna

Sep 22, 2017 • Estes Park, USA

Laboratory of Space Environment Exploration

SEE NSSC. Configuration of FY-3C GNOS

EVANCE Performance of FY-3C GNOS

FY-3C GNOS:

Launched on 23 September 2013; Switched on at 21:48 (LT), on 29 Sep, 2013; Received both GPS&BDS signals; >500 GPS RO events/day ~200 BDS RO events/day Main atm&ion RO retrievals: Refractivity (N), density(ρ), pressure (p), temperature (T), humidity (q), ionospheric electron density (Ne) et al. (Thanks for funding from CMA)

Statistics of the main atmosphere retrievals of FY-3C GNOS

0-30km	N(%) [mean/std]	T(K) [mean/std]	p(%) [mean/std]	q(g/kg) [mean/std]
GNOS vs Radio sound	-0.18/1.58	0.06/2.23	0.06/1.18	<0.3/<1.5
GNOS vs ECMWF	-0.14/0.98	-0.26/1.75	-0.18/1.05	<0.2/<1.2

Ref: M. Liao et al, Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C, amt, 2016

SEENSSC Performance of FY-3C GNOS

Signal from the up-looking antenna are used for POD of the FY-3C satellite.

		Ta	ab.1 POD Pre	cision Statis	tics of Positi	on		GPS POD:
			Radial RMS(cm)	Along RMS(cm)	Cross RMS(cm)	3D RMS(cm)		3D RMS position error
		MEAN	0.919	1.460	2.232	2.868		is 2.868 cm
		MEDIAN	0.925	1.460	2.330	2.911		3D PMS volocity orror
		Ta	b.2 POD Pre	cision Statis	tics of Veloc	ity		is 0.025 mm/s
			Radial RMS	Along RMS	Cross RMS	3D RMS		
			(mm/s)	(mm/s)	(mm/s)	(mm/s)		
		MEAN	0.018	0.014	0.009	0.025		
		MEDIAN	0.018	0.014	0.009	0.024		
80				,		, ,		3D RMS position error
40	A.	Cors s-trad	RMS: 24.5 k RMS: 1.8 S: 4.1		ML.	h ine		is 30 cm
0	ANA.	program	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	markingen	www.waaaaaaaaa	Warmanne		Error Sources:
-40	-	iW-Vi	ettida.	Ŵ	WAA.,			Regional coverage,
-80	Ĺ						100	DOD algorithm
		2880	6760 Epo	ch (5-days arc	10 11	020 144		POD algorithm

POD error using BDS (5 days)

Sep 22, 2017 • Estes Park, USA

BDS-orbit .vs. GPS-orbit (cm)

EVANCE Performance of FY-3C GNOS

Sep 22, 2017 • Estes Park, USA

Laboratory of Space Environment Exploration

Configuration of GNOS II

Simulation of GNSS-R technique

Main characters: •GPS/BDS/GAL for RO •GPS/BDS for GNSS-R Launch Satellite: •Altitude: 833km •Inclination: 98° •Launch time: 2018 Status: Design

SEENSSC. Improvements of GNSS RO

Improvements of GNSS RO module for GNOS II :

Enhancements of antenna:

- A choke-ring POD antenna will be used to replace the patch POD antenna.
- To reduce the backward and side radian of the antenna.
- 10-element array occultation antenna will be used to replace the 5-element occultation antenna.
- > To increase the occultation signals coverage and signal-to-noise ratio.

FY-3C GNOS

Plain POD antenna

Choke-ring POD antenna

7.0 dBi@40° azimuth 10 dBi@45° azimuth

SEENSSC Improvements of GNSS RO

- Increase of the channel numbers
- GPS, BDS and Galileo single channels for positioning and occultation.
- To achieve higher POD accuracy and more RO events
- Plus L2C and B1I open loop channels
- > To improve the data quality of atmosphere near the Earth surface
- Radiation tolerance ASIC
- 65-nm bulk silicon technology
- SEU: 15 MeV•cm²/mg
- SEL: 75 MeV•cm²/mg
- TID: 100 krad (Si)
- > To reduce the power consumption, volume and mass of the receiver.

GNOS	GNOS II
14 GPS DF	26 GPS DF channels
channels:	(L1C/A+L2C+L2P)
(L1C/A+L2P)	12 for position
B for position	14 for occultation
6 for occultation	16 BDS DF
BBDS DF channels:	channels:
(B1I+B2I)	(B1I+B2I)
4 for position	8 for position
4 for occultation	8 for occultation
	6 GAL DF channels:
	(E1b+E5b)
	4 for position

Application Specific Integrated Circuit (ASIC)

GNSS-R module parameters

The main primary parameters of GNSS-R module

Frequency	GPS: L1	
	BDS: B1	
Channel numbers	8	
Sampling rate	61 MHz	
Code tag number	122	
Code tag interval	0.25 code chip	
Code coverage	30.5 chip	
Doppler tag number	24	
Doppler tag interval	500 Hz	
Doppler coverage	12 KHz	
Output rate	750 Kbps	

The parameters of GNOS II GNSS-R LHCP antenna

Frequency	3dB BW	3dB BW	Peak Gain
(MHz)	(θ)	(φ)	(dBi)
1575.42	-16°~16°	- 16° ~16°	14.79

The model of GNOS II GNSS-R antenna (LHCP)

Simulated antenna patterns by using ANSOFT HFSS

Validation airborne campaign

First flight: 2015.11.11 9:30~11:30 Weather: cloudy/fog wind :~1.5m/s Height:500m and 2500m

Left circular polarization antenna, 4 dB

Right circular polarization antenna

Left circular polarization antenna, 13 dB

Air craft and GNSS-R antennas **Second flight:** 2015.11.20 10:00~12:00 Weather: cloudy wind: ~ 5.5m/s Height: 500m

Sep 22, 2017 • Estes Park, USA

Thermal infrared imaging system

Validation airborne campaign

The ground based in-situ observation stations and their measurements:

Validation airborne campaign

Preliminary results:

BDS: 61 × 32 bins, 1/8 chip, 25 Hz

a

8° 05

(chips)

10⁶Lat:37.6881 Lon:118.8520 Alt:18.4959 m Vel:0.0513

Delay (chips)

Retrieved DDM

Doppler shift (Hz)

Retrieved wind

speed (average)

2 m/s

The campaign showed the consistence of the GNSS-R and in-situ observations.

Validation airborne campaign

Preliminary results:

GPS: 61 × 32 bins, 1/8 chip, 25 Hz

The campaign showed the consistence of the GNSS-R and in-situ observations.

BDS: 61 × 32 bins, 1/8 chip, 25 Hz

EVASE Conclusions and Prospects

- •Several GNSS RO and GNSS R receivers have been designed and manufactured.
- **FY-3D GNOS** will be launched in this November.
- ➢GNOS II is being designed and developed for FY-3E satellite, which will integrate the GNSS RO and GNSS R techniques in one payload. So far, these two modules have been mainly demonstrated by a space-based mission and an air-borne campaign, respectively.
- The following FY-3 satellites will carry GNOS II as a key payload.
 Will the FY-3C GNOS work well when it's 5-year old?
- •Will the FY-3D GNOS perform better than the FY-3C GNOS?
- **Will the FY-3E GNOS II go ahead well in 2018?**
- What is the status and new results of other missions worldwide? (COMIS[-2], MetOp, CYGNSS, research missions, commercial missions...)
- Welcome to Beijing to find them out via a conference.

SEE Nesse Preliminary Conf. information

Meeting plan: IGL-1 2018—Welcome!
The first Innovations in GNSS and LEO Occultations & Reflections Workshop
Date: September 2018 Location: Beijing (TBC, offer joint with IROWG-7, to be coordinated with IROWG, ICGPSRO meetings)

Thank you!

Sep 22, 2017 • Estes Park, USA

Laboratory of Space Environment Exploration