

A future constellation of CubeSats yielding 10,000 soundings per day

Dominique Raspaud MÉTÉO-FRANCE/CNRM and co-authors CNES, MÉTÉO-FRANCE/CNRM, IPSL/LATMOS, IPGP COSMIC - IROWG 2017, Estes Park, 21 september 2017

Foreword

The concept study performed by CNES with some collaborations

The authors of the study :

- C. Fallet, CNES, Toulouse, France
- P. Tabary, CNES, Toulouse, France
- J.F. Mahfouf, MÉTÉO-FRANCE/CNRM, CNRS, Toulouse, France
- A. Hauchecorne, CNRS/IPSL/LATMOS, Paris, France
- P. Coisson, IPGP, Paris, France
- R. Mathieu, CNES, Toulouse, France
- T. Martin, CNES, Toulouse, France
- N. Capet, CNES, Toulouse, France

CNES : French national centre for space research MÉTÉO-FRANCE/CNRM : French national meteorological research centre IPSL/LATMOS : Atmosphere and Spatial Observation Lab IPGP : Earth physics institute

- 1 Motivation for the mission
- 2 Objectives of the mission
- 3 Mission requirements
- 4 Main technical specifications
- 5 Conclusion and prospect

1 Motivation for the mission

- 2 Objectives of the mission
- 3 Mission requirements
- 4 Main technical specifications
- 5 Conclusion and prospect

Motivation for the mission

Impact of GNSS-RO data on NWP at Météo-France

Percentage of observation types assimilated in Météo-France global model ARPEGE (january 2017) together with the corresponding FSO impact

GNSS-RO represent only **1.7%** of the observations but contribute to the reduction of the forecast error by **4.3%**.

Motivation for the mission

Decrease of the number of available occultations

Current GNSS-RO measurements available for NWP

- Currently 2,500 occultations per day
- Tendency to decrease of the number of available occultations (ending COSMIC-1)

A future constellation of CubeSats yielding 10,000 soundings per day

Motivation for the mission

- 2 Objectives of the mission
- 3 Mission requirements
- 4 Main technical specifications
- 5 Conclusion and prospect

Objective : increase the number of GNSS-RO data

Targeted number of occultations

Page 7/24

- Refering to *Harnisch et al (2013)*, no saturation effect in the impact of the number of occultations per day assimilated by numerical weather prediction models
- Objective of the mission : 10,000 occultations per day beyond 2025 in addition to the planned operational programs (EPS-SG (METOP-SG), COSMIC-2)
 - ▶ a total of 16,000 occultations per day beyond 2025.

- Motivation for the mission
- 2 Objectives of the mission
- 3 Mission requirements
- 4 Main technical specifications
- 5 Conclusion and prospect

Mission requirements

Analysis of the end user needs

Requirements for NWP and climate

The requirements have to cope with the end user needs while remaining a low cost mission.

	NWP	Climate
Bending Angle Accuracy		
80 to 150 km	4 μrad	
50 to 80 km	3 µrad	
30 to 50 km	$2 \mu rad$	
10 to 30 km	0.8 %	
0 to 10 km	0.8 to 5 %	
Vertical Resolution		
50 to 80 km	1 km	1 km
30 to 50 km	500 m	
10 to 30 km	350 m	
0 to 10 km	200 m	
Horizontal Resolution	100 to 200 km	
Data Latency	1 to 3 hours	~ 1 month

Mission requirements

Analysis of the end user needs

Requirements for space weather

The requirements have to cope with the end user needs while remaining a low cost mission.

	Space Weather	
Measurement Accuracy TEC Sensibility Scintillation	$<$ 3 TECU $<$ 0.1 TECU Amplitude S4 and phase σ_{φ}	
Vertical Resolution 150 to 800 km 80 to 150 km	5 km 1 km	
Data Latency	10 to 60 minutes	

- Motivation for the mission
- 2 Objectives of the mission
- 3 Mission requirements
- 4 Main technical specifications
- 5 Conclusion and prospect

A constellation of CubeSats

Small size, low energy, low cost satellites

- analysis of the existing preliminary studies based on small satellites
- targets for sizing : use of small GNSS-RO receivers, mass of the instrument 1 kg using a minimalist instrumentation
- consumption of 30 Watts

Constellation

Number of satellites for a worldwide and uniform coverage

Depends on the altitude of the LEO, number and coverage of antennas, number of GNSS constellations used

Constellation

Number of satellites for a worldwide and uniform coverage

Main options to cope with the 10,000 per day required occultations :

- 2 antennas (speed and anti-speed side) with coverage 40 degrees
- using GPS+Galileo constellations :

Page 14/24

need for 8 LEO satellites, altitude 600 km

 other option : 4 constellations (GPS+Galileo+GLONASS+Beidou)
need for only 4 LEO satellites, altitude 600 km but more complexity regarding the receiver instrument

Constellation

Orbital planes

- The number of orbital planes has an impact on the **temporal distribution** of the measurements.
- Main option : 1 orbital plane : 06h / 18h for all satellites
 - ▶ to increase the capacity of the solar panels
 - complement the other missions placed on planes with different local hours
 - ► temporal sampling compatible with the needs of NWP but doesn't enable climate and space weather to consider the diurnal cycle.

Ground stations

Ground station network

Maximum data latency with 1 (Northern hemisphere) and 2 polar stations (Northern and Southern hemisphere) :

• Data latency compatible for NWP (target : 1 hour) and space weather (< 25 min in the tropical band) with 2 ground stations.

Payload

Page 17/ 24

Instrument

Choice of the GNSS frequencies

Impact of the different GNSS frequencies on the instrumental performances :

- The highest tracking availability and the lowest tracking loss (not shown) for L5
- The most precise phase measurement for E1
 - ► Main option : receiver bi-frequencies (L1/E1 and L5/E5) and bi-GNSS constellation (GPS and Galileo)
- Receiver based on SDR (Software Defined Radio) technique

Antenna

Requirements

Page 18/24

- Capture of GNSS signals from any point on the horizon of the Earth
- Frequency bands L1 and L5
- Minimum gain of 8 dBi (result of the analysis of the impact of the antenna gain on the instrumental performances)
- Low dimensions, low mass and low cost

Payload

Antenna

Main technical specifications

array antenna (favorite option, prefered to aperture antenna) : patch elements (good RF performance, compact, mature technology)

Coverage	Radiation surface	Maximum gain	Gain on edge of coverage
	(cm $ imes$ cm)	(dB)	(dB)
-50°/+50°	15.5 × 31	8.54	5.54
-40°/+40 °	18.5 imes 44	10.82	7.82
-30°/+30°	24 × 68	13.85	10.85

For a gain of at least 8 dBi :

- azimuth (coverage) : +/- 40 degrees around the speed and anti-speed vectors
- small-size antenna : radiation surface (cm × cm) 18.5 × 44

Payload

Antenna

The choice of the sampling frequency of the measurements linked to the vertical resolution targeted performances

Frequency of **50 Hz** to satisfy the requirements of vertical resolution (< 200 m)

Satellite architecture

Platform as an 'extended 12U'

- Volume : $20 \times 20 \times 50$ (cm \times cm \times cm) to accomodate the antennas and the solar generator
- Total mass (payload + platform) : 19.8 kg
- Power system : solar array and battery (42 Ah)

- Motivation for the mission
- 2 Objectives of the mission
- 3 Mission requirements
- 4 Main technical specifications
- 5 Conclusion and prospect

Conclusion and prospect

Progress of the mission

CNES has performed the preliminary design studies of a mission for a future nanosatellite constellation of GNSS-RO receivers :

- targeted number of occultations : 10,000 per day
- main identified technical specifications to meet the end user requirements and comply with the low cost constraint :
 - · main planned option for the constellation : 8 LEO satellites, altitude of 600 km
 - 1 orbital plane (06h/18h)
 - receiver bi-frequencies (L1/E1 and L5/E5) and bi-GNSS constellation (GPS+Galileo)
 - · 2 polar ground stations
 - array antenna with at least 8 dB gain, 40 degree coverage
 - 'extended 12U' platform

■ further underway studies for the different technical options, open loop, new tracking loop ...

Thank you for your attention !

Any questions?

Contact : dominique.raspaud@meteo.fr

