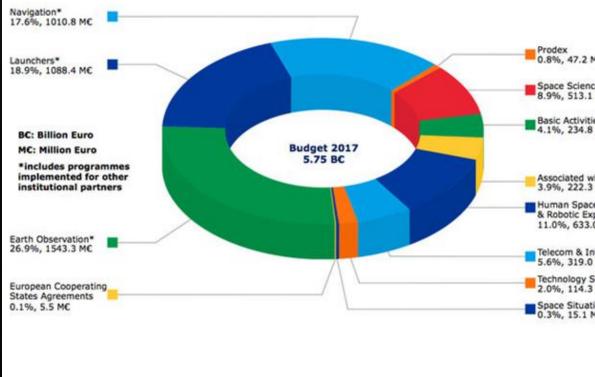


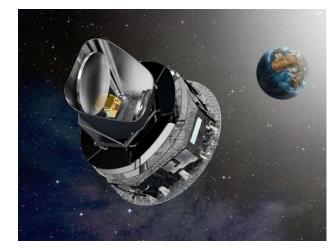
Radiation Environments, Effects and Needs for ESA Missions

Eamonn Daly European Space Agency ESTEC, Noordwijk, The Netherlands


Space Environment Engineering and Science Applications Workshop 5 September 2017

ESA Programmes

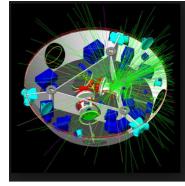
- Technology, Engineering and Quality
- Science
- Human Spaceflight and Robotic Exploration
- Earth Observation
- Telecommunications
- Navigation
- Space Transportation
- Space Situational Awareness



N = 2 = + 11 = 2 = 11 11 = 2 = 2 = 11 + 2 = 2 = 1

Radiation effects trends

- Single event effects (proton RB, cosmic rays)
 Trend: increasing complexity (EO, Telecom)
- "Total dose" (Ionizing dose, non-ionizing dose)
 Trend: COTS/low cost components/standard units
- Payload interference
 Trend: more complex, sensitive payloads
- Solar array degradation
 Trend: high power, light weight
- Internal charging
 Trend: hazardous mission scenarios
- Human spaceflight
 Trend: beyond LEO: Deep Space Gateway, Moon village, Mars



Mitigation:

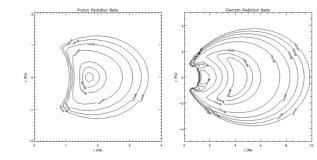
- Testing
- Shielding
- "By design"

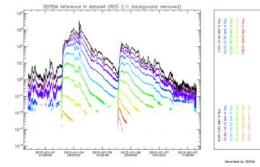
Prerequisite:

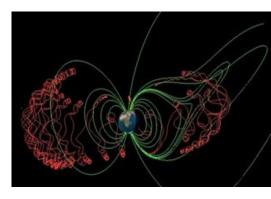
- Knowledge:
 Environment
 - Effects

->Radiation hardness assurance / Testing / Analysis

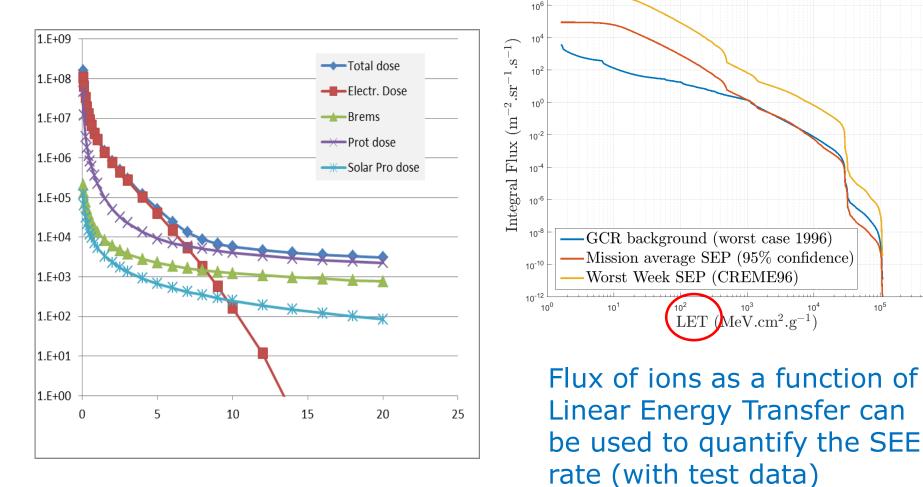
= II 🛌 II 🖛 🕂 II 🗮 🔚 = II II II = = II 🖬 🛶 🔯 II = II II 💥 🕨






Environment Specification

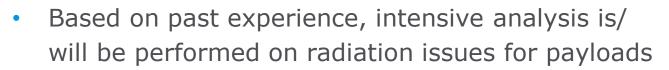
- Established early in a project's development, based on the orbit or location.
- Specification is based on **standard** models that represent:
 - long-term averages of radiation belt proton and electron fluxes;
 - ii. short term enhancements of electron fluxes;
 - iii. statistics of deviations from the long-term average (e.g. as described in most recent AE-9 models);
 - iv. risk assessment of solar particle event proton/ion fluences and peak fluxes;
 - v. worst case plasma charging environment;
 - vi. low energy ion long term fluxes for evaluation of surface degradation;
 - vii. solar cycle modulated GCR fluxes;
 - viii. geomagnetic modulation of (iv) and (vii) if required by the orbit.



_ II ⊾ :: ■ + II ■ ≝ _ II II _ _ : = : II × . . .

Annual radiation dose (rads) within shielding

10^t

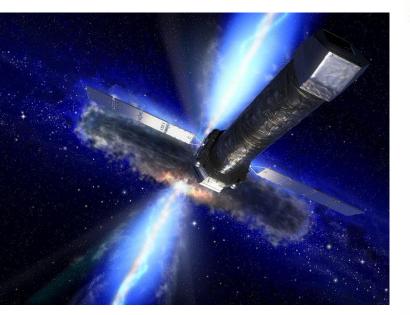

Slide 5

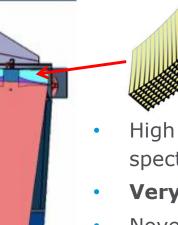
 10^{6}

□ II ▶ II ■ + II ■ ≦ □ II II □ □ H ▲ 0 II □ II ₩ IV

Science Missions

- JUICE Mission to Jupiter requires intensive work on environment specification and radiation transport
- The next 2 "L" (large) missions after L1 (JUICE)
 - L2 Theme: The Hot and Energetic Universe:
 Athena X-ray observatory
 - L3 Theme: The Gravitational Universe: gravitational wave mission ~"*eLISA*"

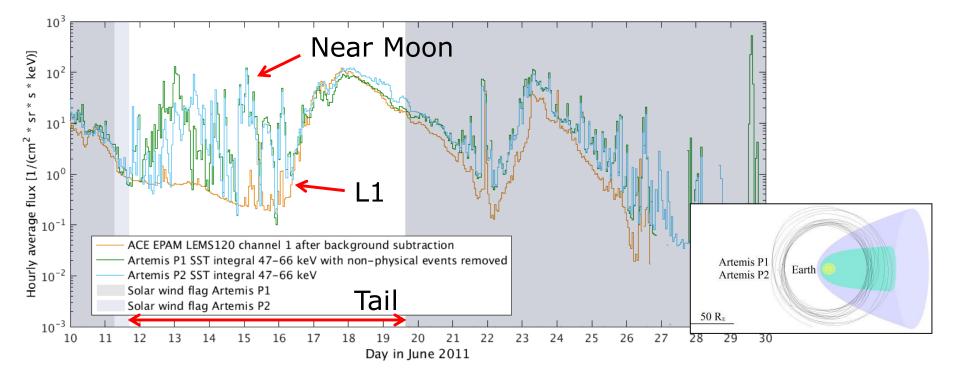

- XMM-Newton: "soft proton" damage; background from soft protons and fluorescence (more than expected)
- o Planck
- o GAIA
- Lisa Pathfinder



REPORT OF THE SENIOR SURVEY COMMITTEE ON THE SELECTION OF THE SCIENCE THEMES FOR THE L2 AND L3 LAUNCH OPPORTUNITIES IN THE COSMIC VISION PROGRAMME Outbur 2013

Athena

Current phase: A/B1;
 Adoption: 2019;
 Launch: 2028



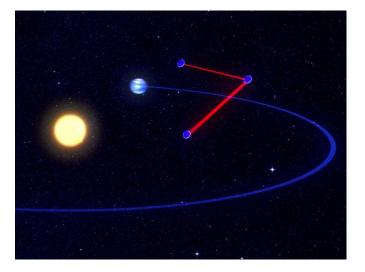
- High resolution imaging and spectroscopic X-ray observatory
- Very low background required
- Novel Si pore X-ray optics
- 2 focal plane (FP) instruments:
 - X-IFU: spatially resolved high resolution spectroscopy
 - cryo bolometer;
 - rear anti-coincidencing
 - WFI: wide field imager with spectroscopy
 - DEPFET APS arrays

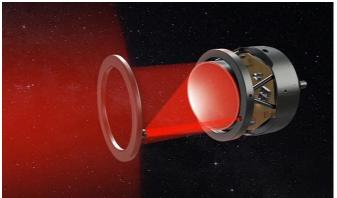
Environment Assessment for Athena

- L2 is not well characterised (in contrast to L1), especially for low E populations
- Likely effects of magnetosphere/tail processes on particle populations

 Analyses of relevant datasets (GEOTAIL, ARTEMIS, etc.) have been done but they emphasise the limited data availability/ applicability

Budjáš et al., Soft Proton Fluxes in and around Earth's Magnetotail, submitted to IEEE Trans. Plas. Sci., 2016


_ II ⊾ :: ■ + II ■ ½ _ II II _ _ II = ... X II II ...



The Gravitational Universe: gravitational wave mission LISA

- LISA concept for detection of LF gravitational waves at 100μ Hz-100mHz
- Triangular formation with arms 1Mkm
- Sensitivity to displacement of \sim 5 × 10⁻¹¹ m
- 46mm free-falling cubes
- Laser transmitters/receivers
- "Noise" sources need careful auditing, as with LISA pathfinder
- Cosmic ray induced test-mass electrostatic charging is one contributor
- Intensive simulation will be performed
- Charging alleviation with UV lamps
- 2034 launch (?)

Credit: AEI/MM/exozet

The Cosmic Vision program

Missions in the Cosmic Vision 2015-2025 Programme		Launch	
L1 mission	JUICE	2022	
L2 mission	Athena	2028	Possibly earlie
L3 mission	Gravitational wave observatory	2034 -	
M1 mission	Solar Orbiter	<u>2018</u>	2019
M2 mission	Euclid	2020	
M3 mission	PLATO	2024	
S1 mission	CHEOPS	2018	
S2 mission	SMILE	2021	
M4 candidates	ARIEL, THOR, XIPE	2025	
M5 selection	Call for proposals closes Oct. '16;	2029	
	selection June '17		

+ BepiColombo (Mercury mission) 2018

Slide 10

EO: growth in on board complexity – detectors and processing proton SEE important

Telecom:

Electric orbit raising hazards + consuming TID budget at BoL; Growth of on board processing and shortened procurement times Megaconstellations – reliability concerns

Navigation: hot and variable environment in MEO; solar cycle variations and short term enhancements; internal and surface charging

Human spaceflight: human hazards at DSG also high reliability requirements

Space Situational Awareness:

tools and missions to address end user needs

= II 🛌 II 🖛 🕂 II 🗮 🚝 = II II = = II 🖬 🛶 🔯 II = II II 💥 🙌

ESA R&D actions

Various R&D programs used to fund R&D; often program driven

- Targeted environment modelling
 - Special locations Jupiter, MEO, L2, Mars,...
 - Investigation of APE9/Irene
- Solar Particle Environment data analysis and modelling
- Shielding tool developments,
 - e.g. Geant4 related tools
 - Interfacing (tool-tool, user)
 - Comparative investigations of methodologies
- Radiation effects research and facilities
 - Single event prediction methodology
 - Very high energy facility experiments (GSI, CERN)
- Space Environment Information System (Spenvis)
- Detectors and instruments; also in-flight effects (DM, net)
- Surface and internal charging tools and measurements

Standardization

European Cooperation on Space Standards – a join venture between agencies, experts and industry

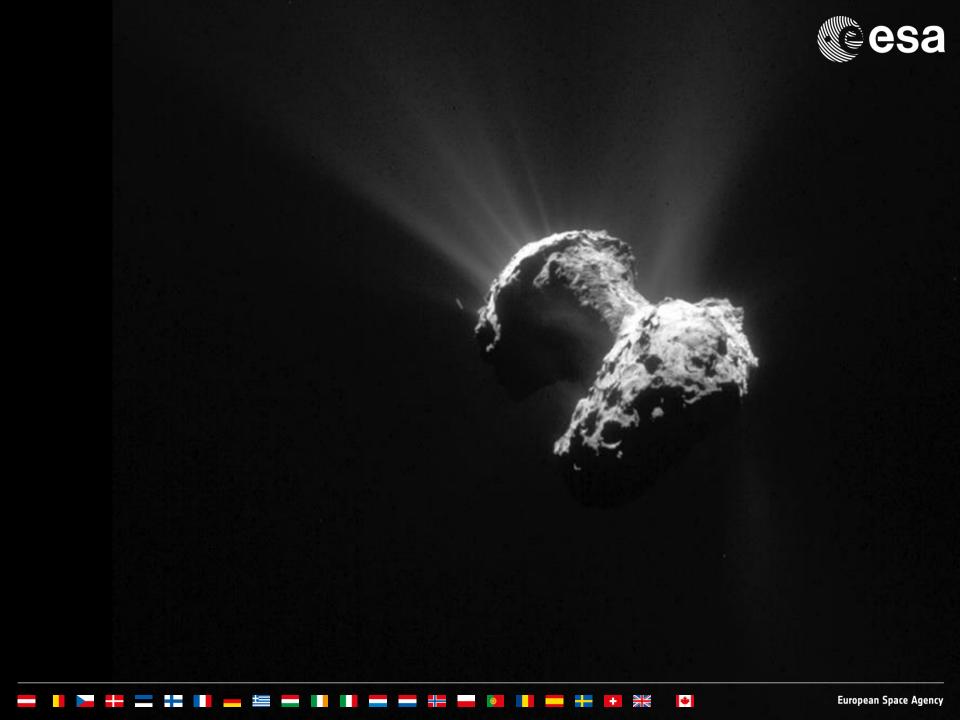
E-10-04 Environment; first issued in 2000 (next update in 2018)

E-10-12 Methods for Calculation of Radiation Effects Also an associated handbook

E-20-06 Spacecraft Charging

Note also the activities of ISO TC10/SC14/WG4 Space Environment

= II ▶ == + II = ≝ = II II = = = = II ■ II = II × II


Some Final Points

- A **quiet sun** means higher GCRs and SAA protons:
 - **increased risk** to electronics (and humans)
- Some missions require knowledge of electron belt enhancements: electric orbit raising, GPS/Galileo, etc.
- Engineering margins: much debate: how good are the data?, the models?, the analysis?; hidden margins
- Standards are the basis for design: progress with models and methods need to be implemented through consensus
- Growing appreciation of on-board monitoring (env,, effects)
- Lessons learned and return on experience not only anomalies
- Far more effort is devoted to **space climate** specification and hardening, rather than space **weather**:
 - GCR; Proton belts; long term effects
 - Testing; mitigation (shielding...); analysis
- Space Weather products are so far most useful in **post-anomaly analyses**
 - what happened and why?

Slide 14

= II 🛌 :: = + II = 😑 = II II = = :: :: 🖬 🛶 🚳 II = :: II 💥 🙌

