ICARE instruments and data sets

Robert ECOFFET, CNES

They made it possible
Michel LABRUNEE, Sébastien BARDE, Françoise BEZERRA,
Guy ROLLAND, Eric LÖRFEVRE, CNES
Daniel BOSCHER, Sébastien BOURDARIE, ONERA
Philippe BOURDOUX, Thomas BALDRAN, EREMS
Christian CHATRY, Anna CANALS, Athina VAROTSOU, TRAD
Gérard SARRABAYROUSE, LAAS
Jean-Roch VAILLE, Frédéric SAIGNE, IES - Univ. Montpellier II
Philippe CALVEL, Michel MELOTTE, TAS
Renaud MANGÉRET, Anne SAMARAS, AIRBUS-DS

SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Foreword

Why measure radiation & effects on board a spacecraft?

Science
- Will not be treated here

Engineering: development / improvement of engineering models
- Electron and proton energy spectra with a good resolution
- Dosimeters → useful for integrated measurement

Engineering: verification / improvement of RHA methods
- Dosimeters → feedback on radiation transport techniques
- In-flight component’s behavior → feedback on radiation effects models

Possible interest in spacecraft operations
- Estimation of remaining resource
- Investigation of in-orbit anomalies (local space weather restitution)

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Short description of the instruments
ICARE and ICARE-NG
High-E charged particle detectors

Electron and proton measurements
(Si diodes single / coincidence)

Angle of visibility 30° (half cone)

Programmable front end electronics
- Noise rejection thresholds
- Pre-amp / amp gains
- 8-bit A-to-D converter
- 256 ΔE channels / detector

On-board functions
- Channel summation
- Logarithmic compression (mantissa, exponent)
- Warning flags
- Data storage buffer

Instrument modes
- Continuous acquisition
- Triggered acquisition

JASON-3, 1336 km, 66°
JASON-2, 1336 km, 66°
SAC-D, 657 km, 98°
SAC-C, 705 km, 98°
ISS, 400 km, 51.6°
MIR, 400 km, 51.6°

Technology board
- Dosimeters
- Test components (drift, SEU, SET, SEL, SEB)

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
How do we work with our partners on the ICARE projects?

<table>
<thead>
<tr>
<th>CNES</th>
<th>ONERA</th>
<th>TRAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission decision and funding</td>
<td>Detector design</td>
<td>dosimeters</td>
</tr>
<tr>
<td>Instrument & technology board definition</td>
<td>Response functions and calibrations</td>
<td>IES : dosimeters</td>
</tr>
<tr>
<td>Instrument development and qualification</td>
<td>Instrument programming requirements</td>
<td>AIRBUS, TAS, CNES : test components</td>
</tr>
<tr>
<td>(with EREMS company)</td>
<td>In-flight calibration</td>
<td>Technology board</td>
</tr>
<tr>
<td>Instrument operations and interface with satellite ground segment</td>
<td>Level 2 data</td>
<td>OMERE engineering tool</td>
</tr>
<tr>
<td></td>
<td>(flux, energy)</td>
<td>Radiation belts science</td>
</tr>
<tr>
<td>Level 0 (TM) and level 1 (counts, channels) data</td>
<td>SW activity indices</td>
<td></td>
</tr>
<tr>
<td>Spacecraft data (attitude, operations,...)</td>
<td>Models (incl. of course other data sources)</td>
<td>http://craterre.onecert.fr/home.html</td>
</tr>
<tr>
<td></td>
<td>Radiation belts science</td>
<td>http://www.trad.fr/en/download/</td>
</tr>
</tbody>
</table>

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
SODAD

Active micro-debris detector

Active detector
- 2 inches diameter p-type silicon wafer

Principle
- wafer used as a capacitor, when debris strikes, capacitor discharges and current is measured

Flown on EuTEF/MEDET payload on COLUMBUS module of ISS

Flown on SAC-D on 3 satellite faces

SAC-D spacecraft interface
- ICARE/NG Radiation Monitor

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
AMBER

“Active Monitor Box of Electrostatic Risk”
Low-E charged particle detector

Electron and ion measurements
(electrostatic deflexion and multi-channel plate detectors)

Angle of visibility 175° /12°

Flux
-from some pA/cm² to some nA/cm².

Energy
- from 10eV up to 30keV

Sampling rate
- one measurement every 500ms

Spacecraft interface
- ICARE/NG Radiation Monitor
ICARE detectors

500 µm Al shield 5 mm thick Al cylinders 500 µm Al shield

150 µm Si diode

P

E

I

6 mm Si/Li diode 500 µm Si diode 500 µm Si diode

(adapted from)

In-Flight Observations of the Radiation Environment and Its Effects on Devices in the SAC-C Polar Orbit

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 49, NO. 6, DECEMBER 2002

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
ICARE spectrometer energy channels

• On SAC-C, ICARE looked through a window in the satellite wall
 ● Elementary level 1 data is particle count per channel over 64s integration periods

<table>
<thead>
<tr>
<th>Electrons</th>
<th>Protons</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Differential (MeV)</td>
</tr>
<tr>
<td>Differential (MeV)</td>
<td>Integral (MeV)</td>
<td>Differential (MeV)</td>
</tr>
<tr>
<td>0.19-0.25</td>
<td>>0.9</td>
<td>9.65-11.35</td>
</tr>
<tr>
<td>0.23-0.29</td>
<td>>1.5</td>
<td>12.5-18.5</td>
</tr>
<tr>
<td>0.29-0.35</td>
<td>>1.7</td>
<td>18.75-27.25</td>
</tr>
<tr>
<td>0.33-0.39</td>
<td>>2.0</td>
<td>27-40</td>
</tr>
<tr>
<td>0.39-0.45</td>
<td></td>
<td>39.5-40.5</td>
</tr>
<tr>
<td>0.45-0.51</td>
<td></td>
<td>35-50</td>
</tr>
<tr>
<td>0.53-0.59</td>
<td></td>
<td>37-55</td>
</tr>
<tr>
<td>0.59-0.65</td>
<td></td>
<td>39-59</td>
</tr>
<tr>
<td>0.64-0.76</td>
<td></td>
<td>41-63</td>
</tr>
<tr>
<td>0.76-0.88</td>
<td></td>
<td>46-75</td>
</tr>
<tr>
<td>1.08-1.36</td>
<td></td>
<td>49-85</td>
</tr>
<tr>
<td>1.24-1.60</td>
<td></td>
<td>53-110</td>
</tr>
<tr>
<td>1.28-1.72</td>
<td></td>
<td>61-140</td>
</tr>
<tr>
<td>1.72-2.20</td>
<td></td>
<td>75-180</td>
</tr>
<tr>
<td>2.19-2.67</td>
<td></td>
<td>85-240</td>
</tr>
<tr>
<td>2.67-3.15</td>
<td></td>
<td>110-380</td>
</tr>
<tr>
<td>3.15-3.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.63-4.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAC-C, 705 km, 98°
Dec 2000-April 2012
Dec 2000-July 2003
Failure of the 6 mm detector on a SAA pass

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
ICARE-NG detectors

500 µm Al shield 5 mm thick Al cylinders 4 mm Al shield

500 µm Si diode 500 µm Si diode 500 µm Si diode

500 µm Al shield 4 mm Al shield 4 mm Al shield

500 µm Si diode 700 µm Si diode 500 µm Si diode
ICARE-NG spectrometer energy channels

• On JASON, ICARE-NG looks through the satellite wall
• On SAC-D, ICARE-NG looked through a window in the satellite wall

- Elementary level 1 data is particle count per channel over 16s integration periods

<table>
<thead>
<tr>
<th></th>
<th>Integral (MeV)</th>
<th>Differential (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>1.6</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>>1.67</td>
<td>69</td>
<td>86</td>
</tr>
<tr>
<td>>1.74</td>
<td>76</td>
<td>99</td>
</tr>
<tr>
<td>>1.81</td>
<td>80</td>
<td>91</td>
</tr>
<tr>
<td>>1.88</td>
<td>83</td>
<td>93</td>
</tr>
<tr>
<td>>1.95</td>
<td>87</td>
<td>95</td>
</tr>
<tr>
<td>>2.02</td>
<td>93</td>
<td>98</td>
</tr>
<tr>
<td>>2.09</td>
<td>94</td>
<td>104</td>
</tr>
<tr>
<td>>2.6</td>
<td>>104</td>
<td></td>
</tr>
<tr>
<td>>104</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>>108</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>>113</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>>115</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>>119</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>>127</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>>138</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>>163</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>>186</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>>292</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Integral (MeV)</th>
<th>Differential (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>0.249</td>
<td>>1.093</td>
<td>>54</td>
</tr>
<tr>
<td>>0.270</td>
<td>>1.135</td>
<td>>56</td>
</tr>
<tr>
<td>>0.299</td>
<td>>1.192</td>
<td>>60</td>
</tr>
<tr>
<td>>0.320</td>
<td>>1.226</td>
<td>>65</td>
</tr>
<tr>
<td>>0.342</td>
<td>>1.300</td>
<td>>66</td>
</tr>
<tr>
<td>>0.363</td>
<td>>1.359</td>
<td>>70</td>
</tr>
<tr>
<td>>0.384</td>
<td>>1.508</td>
<td>>73</td>
</tr>
<tr>
<td>>0.413</td>
<td>>1.657</td>
<td>>75</td>
</tr>
<tr>
<td>>0.455</td>
<td>>1.823</td>
<td>>80</td>
</tr>
<tr>
<td>>0.505</td>
<td>>1.974</td>
<td>>81</td>
</tr>
<tr>
<td>>0.554</td>
<td>>2.106</td>
<td>>85</td>
</tr>
<tr>
<td>>0.604</td>
<td>>2.254</td>
<td>>90</td>
</tr>
<tr>
<td>>0.653</td>
<td>>2.404</td>
<td>>100</td>
</tr>
<tr>
<td>>0.703</td>
<td>>2.567</td>
<td>>105</td>
</tr>
<tr>
<td>>0.752</td>
<td>>2.680</td>
<td>>115</td>
</tr>
<tr>
<td>>0.802</td>
<td>>2.770</td>
<td>>130</td>
</tr>
<tr>
<td>>0.870</td>
<td>>2.850</td>
<td>>160</td>
</tr>
<tr>
<td>>0.895</td>
<td>>2.930</td>
<td>>190</td>
</tr>
<tr>
<td>>0.930</td>
<td>>3.010</td>
<td></td>
</tr>
<tr>
<td>>0.986</td>
<td>>3.090</td>
<td></td>
</tr>
<tr>
<td>>0.994</td>
<td>>3.170</td>
<td></td>
</tr>
<tr>
<td>>1.078</td>
<td>>3.250</td>
<td></td>
</tr>
</tbody>
</table>

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
ICARE missions
Mission timelines
~ >1.5 MeV e- integral channels

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Instrument accommodation on SAC-C (ICARE mission)
Instrument accommodation on SAC-D (CARMEN-1 mission)

ICARE-NG 45° sky / speed -Z/+X
SODAD speed +X anti-speed -X sky -Z

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Instrument accommodation on JASON-2 (CARMEN-2 mission)

ICARE-NG & LPT “Sky View” -Z

LPT-E and -S

ICARE-NG
Instrument accommodation on JASON-3 (CARMEN-3 mission)

ICARE-NG & LPT “Sky View” -Z

AMBRE –Y/-Z/+Y plane

AMBRE

ICARE-NG

LPT-E and -S

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Line of view of the instruments

SAC-C

SAC-D

JASON -2 & -3

FoV

Motion

Earth
Line of view of ICARE / SAC-C

Ascending Orbit

Descending Orbit

B

SAA

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Line of view of ICARE-NG / JASON-2 & -3

Ascending Orbit

Descending Orbit

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Line of view of ICARE-NG / SAC-D

Ascending Orbit

Descending Orbit

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Consequences of the geometries

On SAC-C and JASON-2 & -3 the orientation of the FoV wrt to the magnetic field is more or less the same for ascending and descending orbits.

On SAC-D the FoV is ~parallel to the field for ascending orbits, and ~perpendicular to the field for descending orbits → flux anisotropy is evidenced.
A few examples of observations
SAC-C overview
Magnetic storms and particle events
15 March – 30 May 2001, SAC-C

Same e- channel, different color scales to enhance contrast in high flux zones

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Magnetic storms and particle events
15 March – 30 May 2001, SAC-C

Total count ("rapid counter") on "E" head
With or without smoothing (horizontal & vertical) : for a certain period the satellite power system had an issue and ICARE was cycled 50% of the time.
High energy electrons, outer belt, slot, and 3rd electron belt

Period 1st June 2003 – 1st June 2005, SAC-C

Period 1st June 2004 – 1st June 2005, SAC-C

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
High energy electrons, outer belt, slot, and 3rd electron belt

Coronal holes: 28-day modulation of the outer belt

Period 1st June 2007 – 30 Sept. 2009, SAC-C

Period 1st June 2014 – 15 March 2015, SAC-D
High energy proton belt is fairly stable (Jason orbit)
Use of the data by ONERA

Pipelined into space weather applications (e.g. rad. belt indices)

Compared with specification models (see Sebastien’s talk)

Fed into data assimilation tools + physics-based dynamic model (Salammbô)

Contributes to development of local and global models (see Sebastien’s talk)

Situation Friday Sept. 1st 2017

https://craterre.onecert.fr/home.html

R. Ecoffet, SEESAW Workshop, 5-8 Sept 2017, Boulder, Colorado
Conclusions - remarks

A correct interpretation of {flux, energy} data needs
- To know the line of sight of the instrument
- Position and geometry on the host spacecraft
- Spacecraft stabilization and eventually flight dynamics (e.g. yaw steering, etc…)
- Spacecraft attitude data (e.g. quaternions from AOCS system) – best option
- Spacecraft operations (ON/OFF cycling, etc…)
- → Really impacts the “usability” of level 2 data
- → Needed for the reconstruction of omnidirectional fluxes

A strong added value to the interpretation of {flux, energy} data comes from
- A good mechanical model of the instrument and, as far as possible, a representative mechanical model of the spacecraft
- → Good assessment of response functions
- → Eventually, improvement of instrument range / resolution
- The inclusion of dosimeters (TID, DDD) in the instrument
- → Gives integrated values very useful as independent “checksums” to the detectors
- → Pre-requires of course mechanical models