Building a Weather-Ready Nation by Transitioning Academic Research to NOAA Operations NCWCP 1 November 2017

Contributions to the HWRF modeling system

Robert Fovell

University at Albany, State University of New York

rfovell@albany.edu

Collaborators: Yizhe Peggy Bu, Kristen Corbosiero, Hung-Chi Kuo, Hui Su, Ligia Bernardet, Mrinal Biswas, Kathryn Newman, Sergio Abarca Funding: NOAA/HFIP, NASA, NSF, DTC

HWRF-related projects

- Cloud-radiative forcing (CRF) in HWRF (HFIP)
 - HWRF operational GFDL radiation scheme had issues with CRF
 - Demonstrated how and why CRF influences storm size (Bu, Fovell, and Corbosiero 2014, Fovell et al. 2016)
 - R2O: motivated adoption of modern radiation scheme (RRTMG)
 - Problem: RRTMG caused forecast skill to decrease
- Planetary boundary layer (PBL) mixing in HWRF (HFIP and DTC)
 - HWRF operational GFS PBL scheme performs excessive mixing, masked by CRF issue
 - Demonstrated how and why PBL mixing influences storm size (Bu, Fovell, and Corbosiero 2017)
 - R2O: contributed GFS PBL mixing improvements (Bu and Fovell 2015)
 - Opportunity: GFS PBL mixing possibly remains too deep
- **PBL depth in HWRF** (DTC and EMC)
 - R2O: Testing HWRF with YSU PBL with GFDL surface layer (ongoing)
 - Expected benefit: more realistic hurricane boundary layer structure

Background

Fovell and Su (2007), Fovell et al. (2009, 2010, 2016)

Microphysics experiment

very small part of domain shown

- WRF-ARW @3 km resolution, 72 h
- Uniform SST
- Single (tropical) sounding
- No initial flow
- NO LAND
- 7 microphysics (MPs)
- One initial condition

Fovell and Su (2007) Fovell et al. (2009, 2010, 2016)

Microphysics experiment

very small part of domain shown

Fovell and Su (2007) Fovell et al. (2009, 2010, 2016) Radius of gale-force winds (34 kt = 17.5 m/s)

Microphysics experiment

very small part of domain shown

Fovell and Su (2007) Fovell et al. (2009, 2010, 2016)

Influence of cloud-radiative forcing (CRF)

Retains clear-sky forcing Makes clouds transparent

Fovell et al. (2010)

8

How and why CRF influences tropical cyclone size

Bu, Fovell, and Corbosiero (2014, JAS)

Azimuthally/temporally averaged structure

Condensate (shaded) and net radiative forcing (K/h)

Bu et al. (2014)

Azimuthally/temporally averaged structure

Condensate (shaded) and net radiative forcing (K/h)

Net radiation = LW + SW and includes background (clear-sky) forcing Radiation contour interval differs for positive and negative values Cooling ci=0.1 K/h Warming ci = 0.05 K/h

Azimuthally/temporally averaged structure

HWRF – Thompson/RRTMG 18 16 14 12 10 8 6 20 m/s 20 m/s ~ gale-force 200 300 100 -20-17.5-15-12.5-10 -7.5 -5 -2.5 0 2.5 7.5 10 12.5 17.5 20 15

radial velocity (m/s)

Radial (shaded) and tangential velocity (m/s) Temporally and azimuthally averaged

Bu et al. (2014)

Averaged 10-m winds

(Actually cat. 4-5 but asymmetric)

Bu et al. (2014)

Averaged 10-m winds

Averaged 10-m winds

Original HWRF radiation (no CRF)

Radial & tangential velocity

Condensate & net radiative forcing

Radial & tangential velocity

Condensate & net radiative forcing

Radial & tangential velocity

Condensate & net radiative forcing

CRF summary

- Longwave warming includes weak, persistent ascent, leading to enhanced outer convective activity, expanded size
- Storm size depends on microphysics because hydrometeor species result in different radiative forcings
 - Other factors being equal, more CRF (ice > snow > graupel) leads to wider storms
 - Bu, Fovell, and Corbosiero (2014) and Fovell et al. (2016)
- R2O: GFDL radiation had deficient cloud-radiative forcing
- GFDL → RRTMG transition *decreased* forecast skill largely due to development of **positive storm size bias** in DTC tests
- Something else was working to horizontally expand storms:
 PBL moisture mixing

How and why PBL mixing influences tropical cyclone size

Bu, Fovell, and Corbosiero (2017, JAS)

A common PBL approach

Troen and Mahrt (1986)

$$K_m = \kappa w_s z \left(1 - \frac{z}{h} \right)^p$$

$$w_s = rac{u_*}{\phi}$$
 p = 2

FIG. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O'Brien (1970). Adopted from Stull (1988).

Given PBL depth *h*, scheme provides vertical mixing magnitude and depth

GFS PBL scheme

Troen and Mahrt (1986)

GFS PBL scheme (used by operational HWRF)

$$K_m = \kappa w_s z \left(1 - \frac{z}{h} \right)^p$$

GFS PBL scheme generates **excessive mixing** relative to available observations (Gopal et al. 2012; Zhang et al. 2011)

GFS PBL scheme

Troen and Mahrt (1986)

p

GFS PBL scheme (used by operational HWRF)

GFS PBL scheme generates **excessive mixing** relative to available observations (Gopal et al. 2012; Zhang et al. 2011)

$$K_m = \alpha \kappa w_s z \left(1 - \frac{z}{h} \right)$$

Gopal et al. (2012)

 $\boldsymbol{\alpha}$ parameter added to constrain mixing

Bu et al. (2017)

HWRF – Thompson/RRTMG

Bu et al. (2017)

Water vapor (colored, g/kg) & eddy diffusivity (contour)

Water vapor (colored, g/kg) & eddy diffusivity (contour)

mixing ratio (g/kg)

T/RRTMG/α=0.25

PBL summary

- Mixing moisture upward raises absolute and relative humidity, leading to enhanced outer convective activity, expanded size
- Excessive mixing in GFS scheme was masking CRF problem!
 - Although Gopal et al.'s α reduced mixing... still too large in HWRF
- Storm size depends on PBL schemes because they result in different PBL depths and mixing strengths
 - Other factors being equal, more mixing leads to wider storms
 - Bu, Fovell, and Corbosiero (2017)
- Problem: α has no correct value, applied everywhere (outside hurricane, even over land)
 - R20: we contributed fundamentally different way of limiting mixing via observations and confine it to hurricane core (Bu and Fovell 2015)
- Opportunity: GFS PBL's cousin, YSU, produces very different results

GFS with different Ri_c

Zhang et al. (2011) composite inflow layer depths also shown

Current work summary

- Other factors being equal, YSU PBL results in weaker/ shallower mixing than GFS PBL, even with α adjustment
- Principal difference: how PBL depth is determined (Ri_c)
- R2O: Made YSU compatible with GFDL surface layer, so we can do head-to-head GFS vs. YSU testing
- Ongoing: comparison with observations (Zhang et al. 2011a K_m, Zhang et al. 2011b inflow profiles, Vickery et al. 2009 wind profiles, etc..)
- Ongoing: retrospective hurricane tests with versions of YSU: track, intensity, size (with Sergio Abarca of EMC), supported by DTC
 - Plan on looking at TKE-based schemes (e.g., MYNN)

Final comments

- Practical/operational vs. curiosity-driven research
- DTC resources were crucial to our HWRF work
 - documentation, code support, scientific expertise, retrospective experiments and tests, training, test data sets, visitor support, and much more
 - Went from never having used HWRF to finding a serious flaw in < 1 week ("different eyes")
- I wish the operational side weren't so "opaque"
 - Never met those people, didn't know what they were doing or what their priorities were
 - Working at cross purposes?
- Combining operational AND curiosity-driven research can be beneficial

Thanks to...

- Hurricane Forecast Improvement Program for funding
- Developmental Testbed Center for two visitor projects
- Workshop organizers for invitation
- You for listening

[end]

Does CRF actively control storm size?

• CRF: fixed, external forcing

Fovell et al. (2016)

CM1 – Thompson/Goddard - axisymmetric

CM1 – Thompson/Goddard - axisymmetric

• Expanded radiation field

• CRF: fixed, external forcing

CRF actively controls storm size as a positive feedback

• Contracted radiation field

CM1 – Thompson/Goddard - axisymmetric

HWRF – Thompson/RRTMG

YSU+SFCLAYREV

GFS = unmodified by α parameter

HWRF simulations with YSU PBL (critical Ri = 0 unstable)

Eddy mixing applied to water vapor K_h

FIG. 1. Typical variation of eddy viscosity K with height in the boundary layer proposed by O'Brien (1970). Adopted from Stull (1988).

 Modified configuration GFS_alpha (α= 0.7)
 RRTMG radiation (CRF-on)

Operational configuration
 GFS_alpha (α= 0.7)
 GFDL radiation (no CRF)

...and wind field difference

Diabatic forcing (colored, K/hr) from microphysics

*CRF-on/***α=0.7**

Modified configuration
 GFS_alpha (α)= 0.7
 RRTMG radiation

Modified configuration
 GFS_alpha (α)= 0.25
 RRTMG radiation

Diabatic forcing (colored, K/hr) from microphysics

"Semi-idealized" experiment

very small part of domain shown

Fovell and Su (2007) Fovell et al. (2009, 2010, 2016)

HWRF experimental design

- 2013 HWRF semi-idealized
 - Thompson microphysics, RRTMG radiation, GFS PBL scheme
 - 3 telescoping domains (27/9/3 km) used operationally in 2012
 - NO LAND, uniform SST, Jordan sounding
 - Equinox conditions
- Focus on structure

49

* For 2014 and earlier seasons

Temporally averaged w

HWRF (2013) GFS PBL scheme (α = 0.7) Thompson microphysics RRTMG radiation

"Semi-idealized" (operational configuration for idealized simulation)

52

480 km x 480 km

Bu et al. (2017)

Key difference: critical Richardson number (Ri_c)

