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HWRF-related projects

* Cloud-radiative forcing (CRF) in HWRF (HFIP)
HWRF operational GFDL radiation scheme had issues with CRF

Demonstrated how and why CRF influences storm size (Bu, Fovell,
and Corbosiero 2014, Fovell et al. 2016)

R20: motivated adoption of modern radiation scheme (RRTMG)
Problem: RRTMG caused forecast skill to decrease
* Planetary boundary layer (PBL) mixing in HWRF (HFIP and DTC)

HWRF operational GFS PBL scheme performs excessive mixing,
masked by CRF issue

Demonstrated how and why PBL mixing influences storm size (Bu,
Fovell, and Corbosiero 2017)

R20: contributed GFS PBL mixing improvements (Bu and Fovell 2015)
Opportunity: GFS PBL mixing possibly remains too deep

* PBL depth in HWRF (DTC and EMC)
R20: Testing HWRF with YSU PBL with GFDL surface layer (ongoing)
Expected benefit: more realistic hurricane boundary layer structure




Background

Fovell and Su (2007), Fovell et al. (2009, 2010, 2016)




Microphysics experiment

very small part of domain shown

* WRF-ARW @3 km
resolution, 72 h

* Uniform SST

* Single (tropical)
sounding

* No initial flow

* NO LAND

* 7 microphysics (MPs)
* One initial condition

Fovell and Su (2007)
Fovell et al. (2009, 2010, 2016)




Microphysics experiment

very small part of domain shown
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Microphysics experiment

very small part of domain shown
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Fovell and Su (2007)
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Influence of cloud-radiative
forcing (CRF)
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Fovell et al. (2010)




How and why CRF influences
tropical cyclone size

Bu, Fovell, and Corbosiero (2014, JAS)




Azimuthally /temporally
averaged structure
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Azimuthally /temporally
averaged structure
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Azimuthally /temporally
averaged structure
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Averaged 10-m winds
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Averaged 10-m winds
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Averaged 10-m winds
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HWRF — Thompson/RRTMG
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Bu et al. (2014)




HWRF — Thompson/RRTMG
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HWRF — Thompson/RRTMG
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Longwave warming provokes
gentle lifting

Convective heating broadens
wind field




CRF summary

* Longwave warming includes weak, persistent ascent, leading
to enhanced outer convective activity, expanded size

* Storm size depends on microphysics because hydrometeor
species result in different radiative forcings

Other factors being equal, more CRF (ice > snow > graupel) leads
to wider storms

Bu, Fovell, and Corbosiero (2014) and Fovell et al. (2016)
* R20: GFDL radiation had deficient cloud-radiative forcing

* GFDL = RRTMG transition decreased forecast skill largely due
to development of positive storm size bias in DTC tests

* Something else was working to horizontally expand storms:
PBL moisture mixing
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How and why PBL mixing influences
tropical cyclone size

Bu, Fovell, and Corbosiero (2017, JAS)




A common PBL approach

Troen and Mahrt (1986)

Z\P
Km — K'stz (]_ —_— —) ““""-,: Boundary Layer

23
U so" Surface Layer ¢ >
Wy = —  p=2 0" K(n) F K
8 . . . . . . .
FIG. 1. Typical variation of eddy viscosity K with height in the
boundary layer proposed by O’Brien (1970). Adopted from Stull
(1988). :

Given PBL depth h,
scheme provides vertical mixing
magnitude and depth




GFS PBL scheme

Troen and Mahrt (1986)
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GFS PBL scheme

Troen and Mahrt (1986)
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Height (km)

Bu et al. (2017)
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Height (km)
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Enhanced mixing moistens
top of boundary layer

Moistening brings air to

saturation

Convective heating broadens
wind field




PBL summary

* Mixing moisture upward raises absolute and relative humidity,
leading to enhanced outer convective activity, expanded size

* Excessive mixing in GFS scheme was masking CRF problem!
Although Gopal et al.”s o reduced mixing... still too large in HWRF

* Storm size depends on PBL schemes because they result in different
PBL depths and mixing strengths

Other factors being equal, more mixing leads to wider storms
Bu, Fovell, and Corbosiero (2017)

* Problem: a has no correct value, applied everywhere (outside
hurricane, even over land)

R20: we contributed fundamentally different way of limiting mixing
via observations and confine it to hurricane core (Bu and Fovell 2015)

* Opportunity: GFS PBL’s cousin, YSU, produces very different results




GFS vs. YSU

Troen and Mahrt (1986)

GFS PBL scheme YSU PBL scheme
(used by operational HWRF) (often used in WRF-ARW)

Differ in how they determine
PBL depth h
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Current work summary

* Other factors being equal, YSU PBL results in weaker/
shallower mixing than GFS PBL, even with o adjustment

* Principal difference: how PBL depth is determined (Ri )

* R20: Made YSU compatible with GFDL surface layer, so we
can do head-to-head GFS vs. YSU testing

* Ongoing: comparison with observations (Zhang et al. 2011a
K., Zhang et al. 2011b inflow profiles, Vickery et al. 2009 wind
profiles, etc..)

* Ongoing: retrospective hurricane tests with versions of YSU:
track, intensity, size (with Sergio Abarca of EMC), supported
by DTC

Plan on looking at TKE-based schemes (e.g., MYNN)




Final comments

Practical/operational vs. curiosity-driven research

DTC resources were crucial to our HWRF work

documentation, code support, scientific expertise, retrospective
experiments and tests, training, test data sets, visitor support,
and much more

Went from never having used HWRF to finding a serious flaw in
< 1 week (“different eyes”)

| wish the operational side weren’t so “opaque”

Never met those people, didn’t know what they were doing or
what their priorities were

Working at cross purposes?

Combining operational AND curiosity-driven research can be
beneficial




Thanks to...

Hurricane Forecast Improvement Program for funding
Developmental Testbed Center for two visitor projects

Workshop organizers for invitation

You for listening




[end]




height (km)

Does CRF actively control storm size?

e CRF: fixed, external forcing

mixing ratio (g/kg)
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Fovell et al. (2016)
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Eddy mixing estimates
for 500 m MSL
(Zhang et al. 2011a)
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“Semi-idealized” experiment

very small part of domain shown
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HWRF experimental design

* 2013 HWRF semi-idealized

* Thompson microphysics, RRTMG radiation, GFS PBL scheme

3 telescoping domains (27/9/3 km) used operationally in 2012

* NO LAND, uniform SST, Jordan sounding
* Equinox conditions

* Focus on structure

* For 2014 and earlier seasons

. ~. 27,9and3km
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HWRF simulation strategy

for semi-idealized experiments
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2.
GFS vs. YSU eddy mixing profiles
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