

The AE9/AP9-IRENE Radiation and Plasma Environment Models

7 September 2017

Bob Johnston

Space Vehicles Directorate

Air Force Research Laboratory

on behalf of the AE9/AP9 team

AFRL HERITAGE | 1917-2017

100 YEARS OF U.S. AIR FORCE SCIENCE & TECHNOLOGY

Integrity ★ Service ★ Excellence

Distribution A: Approved for public release; distribution unlimited. OPS-17-14854

- Background on AE9/AP9/SPM model
- Summary of updates through V1.35
- Version 1.50 update
- Future version plans
- Dedicated web site for model distribution

What is AE9/AP9/SPM?

- AE9/AP9/SPM specifies the natural trapped radiation environment for satellite design and mission planning
- It improves on legacy models to meet modern design community needs:
 - Uses 37 long duration, high quality data sets
 - Full energy and spatial coverage—plasma added
 - Introduces data-based uncertainties and statistics for design margins (e.g., 95th percentile)
 - Dynamic scenarios provide worst case estimates for hazards (e.g., SEEs)
 - Architecture supports routine updates, maintainability, third party applications
- Version 1.00 released in 2012

- Expanded energy coverage: keV plasma to GeV protons
- Spatial coverage for all orbit regimes, including tailored coverage for high resolution in LEO
- Model provided with GUI and CmdLine access
- Documentation includes recommended modes for typical use cases

Model	AE9	AP9	SPM	
Species	e⁻	H+	e⁻, H⁺, He⁺, O⁺	
Energies	40 keV— 10 MeV	100 keV— 2 GeV (V1.20)	1—40 keV (e ⁻); 1.15—164 keV (H ⁺ , He ⁺ , O ⁺)	
Range in L	0.98 < L* < 12.4	0.98 < L [*] < 12.4	2 < L _m < 10	

Data Sets—Temporal Coverage

Distribution A

Versions to Date

AFRL HERITAGE | 1917-2017

		10 ⁶ AP9 V1.20 4.3 MeV
V1.00 (2012)	Initial release, 31 data sets	10 10 ⁵ 10 ⁵ 10 ⁵ 10 ⁵ CRRES Quiet CRRES Active AP9 25th %ile AP9 mean AP9 95th %ile TacSat-4
V1.20 (2015)	TacSat-4/CEASE proton data THEMIS/ESA plasma data Van Allen Probe influence to AE9 and AP9 changes more I/O options added IGRF 2015	10 ³ 10 ⁴ 10 ² 10 ⁴ 10 ⁴ 1.5 10 ⁴
V1.30 (2016)	Fixed instability in V1.20 AP9, AE9 Monte Carlo mode	10 10 10 10 10 10 10 10 10 10
V1.35 (2017)	Support for parallelized processing	10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 2 GeV 2

Forthcoming Versions

V1.50 (Sept 2017)	New data for electrons, protons			
V1.55(?) (2017-18)	Kernels for faster effects calculations			
V1.60 (2018)	Additional Van Allen Probes data			
V2.00 (2018-19)	New architecture New modules—solar protons, sample solar cycle			
	New data sets			
V2.50(?) (2019)	New data sets (DSX, ERG)			

Changes in AE9/AP9 V1.50

- AP9 and AE9: new data from NASA's Van Allen Probes mission
- AP9: data added from Azur and TWINS 2
- AP9 and AE9: other revisions to flux maps (addressing gradients and other aspects of data set merging)
- Limited feature changes with this release—most significant will be new accumulator options (e.g., fluence accumulation intervals)

satellite	orbit	time period	instrument	species	energy
Van Allen Probes A & B	GTO (800 x 30600 km, 10°)	Aug 2012 – Dec 2016	RPS (Relativistic Proton Spectrometer)	protons	>58 MeV ~2 GeV
			REPT (Relativistic Electron Proton Telescope)	protons	20 – 100 MeV
			MagEIS	electrons	30 keV – 2 MeV
Azur	384 x 3145 km, 103°	Nov 1969 – Mar 1970	EI-88 telescope	protons	1.5 – 104 MeV
TWINS 2	Molniya (1000 x 39500 km, 63°)	Apr 2008 – Nov 2016	HILET	protons	6 – 30 MeV

0.01 0.1 1 10 100

- AP9 adds Azur, HiLET and Van Allen Probes data
- These new data generally bring down the inner zone fluxes
- Especially large changes >150 MeV where RPS data represent the first clean observations in the inner zone up to 2 GeV

V1.50 AP9 Validation

- V1.50 is ~2.5-3.5x lower than POES SEM channels
- V1.50 is ~1-4x higher than SAMPEX PET channels
- Shape of SAA profile is generally consistent between model and data

V1.50 Changes – AP9 Dose

- Lower dose in all orbits
- Most pronounced in LEO at all depths and in GTO at thicker depths
- In some places, larger error bars raise 95% CL even though mean flux is lower

- AE9 adds Van Allen Probes data
- These new data generally bring down the inner zone fluxes
- Some localized higher fluxes

- Fluxes are higher <300 keV for both 1000 km orbits
- Fluxes are a bit higher at all energies in 800 km orbit
- Error bars are larger

- Starting with V1.50, AE9/AP9 now includes international contributions (Azur data)
- To recognize the internationalization of the model, we will begin transition to a new name: International Radiation Environment Near Earth (IRENE)
- AE9/AP9 v1.5 is then also known as AE9/AP9-IRENE
- We will use both names for a few releases, and eventually switch to IRENE only
- In addition to Azur data, ESA is working hard to produce a Monte Carlo solar proton model that we can integrate with AP9

Kernel-Based Effects Calculation

Proton SEE rate calculation, proton displacement damage, electron internal charging currents, etc.

Example: Proton SEE rate calculation

- User provides Weibull or Bendel Parameters and desired shielding depths
- Utility computes "kernel" that transforms proton flux to SEE rate behind shielding
- Model will be able to output
 - Instantaneous SEE rate
 - Mission average SEE rate
 - Worst case SEE rate on desired timescale

Version 2.00

- Major feature changes:
 - Sample solar cycle—introduces a full solar cycle reanalysis as a flythrough option
 - New module frameworks for e.g. plasma species correlations, SPM stitching with AE9/AP9, auroral electrons, additional coordinates for MLT variation in SPM
 - AP9 improvements: solar cycle variation in LEO, east-west effect
 - Incorporate untrapped solar protons with statistics
- New data
 - Van Allen Probes/RPS, MagEIS & REPT protons and electrons
 - PAMELA protons—addresses high energy proton spectra
 - Other international data sets: possibilities include Cluster/RAPID-IIMS, ESA SREMs, CORONAS, NINA, Akebono/EXOS-D, SAC-C, Jason2, PROBA-V/EPT

AE9/AP9 Website

- We have launched a dedicated web site for the AE9/AP9 project hosted by AFRL's Virtual Distributed Laboratory: https://www.vdl.afrl.af.mil/programs/ae9ap9
- The latest version of the model may be downloaded from this site after creating an account
- Summaries and model documentation are also available (no account needed)
- Future news and releases will be announced through the website

- AE9/AP9/SPM provides radiation environment specification to meet the needs of modern designers
- Successive releases demonstrate maintainability
- Future releases will include new data sets and new features, driven by user needs
- <u>Comments, questions, etc. are welcome and encouraged!</u>
- Please send feedback, requests for model or documentation, etc., to (copy all):
 - Bob Johnston, Air Force Research Laboratory, <u>AFRL.RVBXR.AE9.AP9.Org.Mbx@us.af.mil</u>
 - Paul O'Brien, The Aerospace Corporation, <u>paul.obrien@aero.org</u>
- Model downloads, documentation, news are available at AFRL's Virtual Distributed Laboratory: <u>https://www.vdl.afrl.af.mil/programs/ae9ap9</u>

