GOES-R Magnetospheric Particle Sensors: Progress Report
Juan Rodriguez, Brian Kress, Athanasios Boudouridis

University of Colorado CIRES and
NOAA National Centers for Environmental Information

Space Environment Engineering and Science Applications Workshop (SEESAW),
September 6, 2017
GOES-R+ Space Environment In-Situ Suite (SEISS): Magnetospheric Particles

Magnetospheric Particle Sensor – Low Energy (MPS-LO):
- Electrostatic analyzers (2 nested triquadrispheres)
- 14 angular zones (12 unique) spanning 180° north-south fan
- 2 dark zones for background correction
- 30 eV-30 keV electrons: 15 energies
- 30 eV-30 keV ions: 15 energies

Magnetospheric Particle Sensor – High Energy (MPS-HI):
- Solid-state telescopes (5 per species) arranged in N-S fan
- 50 keV-4 MeV, >2 MeV electrons: 11 energy bands
- 80 keV-10 MeV protons: 11 energy bands
- Two hemispherical dosimeters:
 - 100 mil (2.54 mm) Al: >1.2 MeV electrons, >22 MeV protons
 - 250 mil (6.35 mm) Al: >2.8 MeV electrons, >37 MeV protons

Magnetic field vector from GOES tri-axial fluxgate magnetometer is essential for calculating pitch angle for each telescope / zone and for conversion of flux to phase space density as a function of the first adiabatic invariant

Each SEISS suite also includes an Energetic Heavy Ion Sensor (EHIS) and two Solar and Galactic Proton Sensors (SGPS) [talk by Brian Kress this afternoon]

SEISS MPS designed, built, tested and calibrated by Assurance Technology Corporation
MPS-HI Energy Channels

<table>
<thead>
<tr>
<th>Electron Channel</th>
<th>Energy Range (keV)</th>
<th>Bowtie Energy (keV)</th>
<th>Proton Channel</th>
<th>Energy Range (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1S</td>
<td>50-80</td>
<td>59</td>
<td>P1</td>
<td>80-115</td>
</tr>
<tr>
<td>E2</td>
<td>90-145</td>
<td>118</td>
<td>P2</td>
<td>105-148</td>
</tr>
<tr>
<td>E3+E3A</td>
<td>145-230</td>
<td>181</td>
<td>P3</td>
<td>148-212</td>
</tr>
<tr>
<td>E4</td>
<td>230-325</td>
<td>272</td>
<td>P4</td>
<td>212-309</td>
</tr>
<tr>
<td>E5</td>
<td>325-460</td>
<td>378</td>
<td>P5</td>
<td>309-536</td>
</tr>
<tr>
<td>E6</td>
<td>460-705</td>
<td>548</td>
<td>P6</td>
<td>536-720</td>
</tr>
<tr>
<td>E7</td>
<td>705-1360</td>
<td>855</td>
<td>P7</td>
<td>720-1000</td>
</tr>
<tr>
<td>E8</td>
<td>1360-1785</td>
<td>1493</td>
<td>P8</td>
<td>1000-1900</td>
</tr>
<tr>
<td>E9</td>
<td>1785-2685</td>
<td>1967</td>
<td>P9</td>
<td>1900-3200</td>
</tr>
<tr>
<td>E10</td>
<td>2685-4345</td>
<td>2903</td>
<td>P10</td>
<td>3200-6500</td>
</tr>
<tr>
<td>E11</td>
<td>>2000</td>
<td>>2075</td>
<td>P11</td>
<td>6500-12000</td>
</tr>
<tr>
<td>E10a*</td>
<td>4345-5660</td>
<td>>4111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not reported in real time!
Geometry-Energy Factors for Real-Time Processing Derived Using Bowtie Analysis of CRRES Spectra

- Cross-calibrated CRRES Medium Electron Sensor A (MEA) and High Energy Electron Fluxmeter (HEEF) data set from ViRBO [Johnston, Lindstrom and Ginet, 2011]
- July 1990 – October 1991 in a geosynchronous transfer orbit
- MEA: 148-1582 keV, 17 channels
 - Higher resolution than MPS-HI
 - Considered the ‘gold standard’
- HEEF: 0.65-7.5 MeV, 11 channels
- Use omnidirectionally averaged spectra between 6 ≤ L < 8 in which 1.6 MeV MEA and HEEF observations agree to within 2x
 - ~30,000 such spectra in 1990
 - Fit HEEF spectra ≥1.6 MeV to exponentials due to poor counting statistics
 - Extrapolate down to 30 keV by fitting exponentials to lowest-energy MEA channels

1000 randomly selected CRRES MEA + HEEF spectra from 1990 used for bowtie analysis
These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized.
GOES-16 0.55-4.1 MeV electrons, 08 January – 31 July 2017

These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized.
>2 MeV Channels: GOES 8-15 vs. GOES-16+

- Since 1974, >2 MeV electrons have been measured by NOAA in geostationary orbit
 - “The single electron channel was intended primarily to provide an independent monitor of the electron environment critical to the X-ray sensor performance…” [Grubb, 1975]
- Since c. 1980, these data have been used to diagnose internal charging effects
- Since 1995, SWPC has issued real-time alerts when GOES-East >2 MeV electron fluxes exceed 1000 electrons/(cm² sr s) [Wrenn and Smith, 1996]
 - GOES-West >2 MeV fluxes factor of 2.5 greater than at GOES-East [Meredith et al., 2015]

<table>
<thead>
<tr>
<th></th>
<th>EPS/EPEAD (8-15)</th>
<th>MPS-HI (16+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector type</td>
<td>Dome</td>
<td>Solid-state telescopes (5)</td>
</tr>
<tr>
<td>Geometric factor</td>
<td>0.05 cm² sr</td>
<td>0.0012 cm² sr</td>
</tr>
<tr>
<td>Number of look directions</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Look directions, centers</td>
<td>eastward, westward</td>
<td>±70°, ±35°, 0° (N-S fan)</td>
</tr>
<tr>
<td>Full width, each look</td>
<td>~110°</td>
<td>30°</td>
</tr>
<tr>
<td>Typical central pitch-angles</td>
<td>90°</td>
<td>5°, 30°, 65°, 100°, 135°</td>
</tr>
<tr>
<td>Proton contamination</td>
<td>> 17 MeV</td>
<td>>300 MeV</td>
</tr>
<tr>
<td>Background equivalent flux level (uncorrected)</td>
<td>~20 el/(cm² sr s)</td>
<td>~400 el/(cm² sr s)</td>
</tr>
</tbody>
</table>
GOES-16 >2 MeV Electrons, 08 January – 31 July 2017

These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized.
GOES-16 vs. -13 >2 MeV Electrons (Telescopes 1 and 4), 8 January-11 April 2017, Kp < 2o

Cross-comparisons over the first 3 months of GOES-16 operations show that MPS-HI Telescopes 1 and 4 provide comparable >2 MeV flux measurements to GOES-13, can be used as the basis for future alerts.

These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized.
MPS-LO: Origins

• H. Farthing et al. (1982), ‘Differential Spacecraft Charging on the Geostationary Operational Environmental Satellites’:
 The present Space Environment Monitor on GOES does not include the capability for monitoring particle populations of energies responsible for spacecraft charging. The requirements were set for GOES before the charging was recognized. Addition of the instrument necessary has been identified by NOAA's Space Environment Laboratories as a high priority for future operational satellites. Unfortunately present programmatic and funding limitations will likely prevent the addition of this capability until the late 1990's.

• J. Mazur (ed.) (2003), ‘Workshop on Energetic Particle Measurements for the GOES R+ Satellites’:
 – “The workshop recommended extending the energy range for electrons to below the lower energy limit of the GOES N-Q satellites of 30 keV. The main phenomenon driving this recommendation was differential charging of satellite surfaces (Fennell; Mandell; Carey).”
 – “The workshop recommended extending the energy range for protons to below the lower energy limit of the GOES N-Q satellites of 30 keV. The phenomena driving this recommendation were radiation dose to surfaces, surface damage [Bodeau; Fennell] and source populations for the ring current [Carey; Sibeck].”
MPS-LO Energy Channels

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E15</td>
<td>0.025</td>
<td>0.027</td>
<td>I15</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>E14</td>
<td>0.040</td>
<td>0.044</td>
<td>I14</td>
<td>0.049</td>
<td>0.049</td>
</tr>
<tr>
<td>E13</td>
<td>0.066</td>
<td>0.073</td>
<td>I13</td>
<td>0.080</td>
<td>0.081</td>
</tr>
<tr>
<td>E12</td>
<td>0.115</td>
<td>0.121</td>
<td>I12</td>
<td>0.130</td>
<td>0.130</td>
</tr>
<tr>
<td>E11</td>
<td>0.192</td>
<td>0.199</td>
<td>I11</td>
<td>0.212</td>
<td>0.212</td>
</tr>
<tr>
<td>E10</td>
<td>0.316</td>
<td>0.339</td>
<td>I10</td>
<td>0.346</td>
<td>0.346</td>
</tr>
<tr>
<td>E9</td>
<td>0.527</td>
<td>0.544</td>
<td>I9</td>
<td>0.564</td>
<td>0.566</td>
</tr>
<tr>
<td>E8</td>
<td>0.888</td>
<td>0.900</td>
<td>I8</td>
<td>0.926</td>
<td>0.926</td>
</tr>
<tr>
<td>E7</td>
<td>1.502</td>
<td>1.488</td>
<td>I7</td>
<td>1.514</td>
<td>1.518</td>
</tr>
<tr>
<td>E6</td>
<td>2.439</td>
<td>2.464</td>
<td>I6</td>
<td>2.490</td>
<td>2.494</td>
</tr>
<tr>
<td>E5</td>
<td>4.043</td>
<td>4.079</td>
<td>I5</td>
<td>4.094</td>
<td>4.094</td>
</tr>
<tr>
<td>E3</td>
<td>11.20</td>
<td>11.21</td>
<td>I3</td>
<td>11.30</td>
<td>11.30</td>
</tr>
<tr>
<td>E2</td>
<td>18.59</td>
<td>18.62</td>
<td>I2</td>
<td>18.20</td>
<td>18.20</td>
</tr>
<tr>
<td>E1</td>
<td>30.81</td>
<td>30.81</td>
<td>I1</td>
<td>30.00</td>
<td>30.00</td>
</tr>
</tbody>
</table>

L and R analyzer energies are separately characterized.

Analyzer parameter: \(\Delta E/E = 0.049 \)
MPS-LO and MPS-HI 18-60 keV Electron Fluxes, 08 January – 31 July 2017

MCP HV adjusted 01 March

Telescope 1 and Zone 9 are ~coaligned

These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized.
MPS-LO and MPS-HI 18-60 keV Electron Fluxes, 01-30 June 2017

Telescope 1 and Zone 9 are ~coaligned

These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized.
SEISS MPS-LO Backgrounds

- 4 background zones: Electrons L, Electrons R, Ions L, Ions R
- 15 energy channels: E1 at 30 keV, E15 at 30 eV
- Plotted for days 062 to 078 of 2017
- Plotted along all the MPS-HI electron channels (E1S-E11)
- Similar daily correlation between MPS-LO backgrounds and MPS-HI, at least for the ion and low-energy electron MPS-LO backgrounds
SEISS MPS-LO backgrounds: Penetrating Radiation

- 4 background zones: Electrons L, Electrons R, Ions L, Ions R
- Scatter plot of MPS-LO lowest energy channel (E15 at 30 eV) and MPS-HI channel E7
- Color coded days 062 to 078 of 2017
- R is the linear Pearson Correlation Coefficient, measure of a linear relation between the two plotted variables (1-linear correlation, 0-no linear correlation)
SEISS MPS-LO Backgrounds: Coupling

SEISS MPS-LO Backgrounds/MPS-LO Electrons correlations, DOY 0620000-0782400, 2017 (AvBin=10 min)
Ion Line Examples Observed in MPS-LO Fluxes (Zone 4)

These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized.
Ion Line Occurrence in MPS-LO Data

• Visually inspected E-t spectrograms from 01 March – 31 May 2017
 – 42 days when s/c in umbra (01 March – 11 April) – 2 days w/o data = 40 cases
• Looked for occurrences of ion lines
 – Noted whether any part of the ion line exceeded 1 keV
 – Compared their occurrence times to umbra start/finish times
• Results:
 – In 40 eclipse days observed (01 March – 11 April):
 • >1 keV ion line in 18 cases during eclipse
 – Most negative potential observed ~9 kV (31 March)
 • Ion line <1 keV in 3 cases during eclipse
 • Ion line vanishes when s/c exits eclipse
 • 5 clear ion lines outside eclipse, only 1 above 1 keV
 – In 50 non-eclipse days examined (12 April – 31 May):
 • No clear ion lines >1 keV
 • Two clear ion lines <1 keV

Initial conclusion: on GOES-16, ion lines in MPS-LO data are predominantly an eclipse phenomenon
Effect of Arcjet Firings on MPS-LO Data

- GOES-R uses arcjets for north-south stationkeeping
 - Electric arc sustained inside hydrazine rocket engine for increased exhaust velocity, reduced fuel consumption
- Distinct, repeatable suppression of the electron counts in the lowest 2-3 energy channels
- No clear signature in ion channels

(White blotches on spectrograms due to overcorrection by current background removal algorithm)

These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized.
SEISS Level 1 and 2 Data Products

Level 2 Initial Operational Capability (IOC): September 2018

SEISS Level 2 Algorithms
- **SEISS.16**: One-minute averages - all MPS and SGPS channels
- **SEISS.17**: Five-minute averages - all MPS and SGPS channels
- **SEISS.18**: Convert differential proton flux values to integral flux values
- **SEISS.19**: Density & temperature moments & level of spacecraft charging
- **SEISS.20**: Event detection based on flux values; Linear Energy Transfer

SEISS Level 2 Data Products

1. **MPS-LO L1b**
 - 1-sec: MAG 1-min Averages
 - 5-min: MAG 5-min Averages
 - SEISS.19a Moments and Spacecraft Charging + pitch angles

2. **MPS-HI L1b**
 - 1-sec: MAG 1-min Averages
 - 5-min: MAG 5-min Averages
 - SEISS.19b Moments + pitch angles

3. **SGPS L1b**
 - 1-sec: SEISS.18a Integral Flux (1-min)
 - 5-min: SEISS.18b Integral Flux (5-min)

4. **EHIS L1b**
 - 5-min: SEISS.20c Linear Energy Transfer

Electron 2 MeV Integral Flux Alerts
Solar Radiation Storm Alerts
Summary

• GOES-16 SEISS Magnetospheric Particle Sensors are generally operating as expected

• Technical issues in work:
 – MPS-HI background removal over all energetic proton conditions (not yet fully tested – 14 July 2017 SEP event too weak to contaminate)
 – MPS-LO background removal, esp. energy-dependent coupling
 – Understanding charging behavior observed by MPS-LO and refinement of automatic determination of s/c potential
 – Implementation of Level 2 moments algorithms in real-time processing system