45th Weather Squadron
Space Weather Support to Launch
Space Weather Workshop, April 2017

Kathy Winters
Launch Weather Officer
Cape Canaveral Air Force Station
“Exploit the Weather to Assure Safe Access to Air and Space”
Background

Florida Spaceport

- KSC
- CCAFS
- Patrick AFB
• Weather Impacts
 • Launch Operations
 • Ground Operations
 • Aviation Missions
 • Special Missions
Weather Impacts to Launch

- A third of launch delays due to weather
- Nearly half of launch scrubs due to weather

1 Jan 88–29 Mar 17 (29+ Years)

Countdowns (100%)

→ Launch (62%)
 → On time (68% / 42%)
 → Delay (32% / 20%)
 → Scrub (38%)
 → Weather (31% / 6%)
 → Customer/Range Issues (69% / 14%)

→ Weather (49% / 18%)
 → Customer/Range Issues (51% / 19%)
Why is Solar Weather a Concern for Launch?

- Plasma
 - Charging
 - Biasing of instrument readings
 - Pulsing
 - Power drains
 - Physical damage

- Particle radiation
 - Ionizing & Non-Ionizing Dose
 - Degradation of microelectronics
 - Degradation of optical components
 - Degradation of solar cells
 - Single Event Effects
 - Data corruption
 - Noise on Images
 - System shutdowns
 - Circuit damage

- Neutral gas particles
 - Drag
 - Torques
 - Orbital decay

- Ultraviolet & X-ray
 - Space Erosion
 - Degradation of thermal, electrical, optical properties
 - Degradation of structural integrity

- Micro-meteoroids & orbital debris
 - Impacts
 - Structural damage
 - Decompression

Why is Solar Weather a Concern for Launch?

For example, for Solar Radiation Storms:

<table>
<thead>
<tr>
<th>Scale</th>
<th>Description</th>
<th>Effect</th>
<th>Physical Measure (Flux level of >= 10 MeV particles)</th>
<th>Average Frequency (1 cycle = 11 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 5</td>
<td>Extreme</td>
<td>Biological: Unavoidable high radiation hazard to astronauts on EVA (extra-vehicular activity); passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk. Satellite operations: Satellites may be rendered useless, memory impacts can cause loss of control, may cause serious noise in image data, star-trackers may be unable to locate sources; permanent damage to solar panels possible. Other systems: Complete blackout of HF (high frequency) communications possible through the polar regions, and position errors make navigation operations extremely difficult.</td>
<td>10⁵</td>
<td>Fewer than 1 per cycle</td>
</tr>
<tr>
<td>S 4</td>
<td>Severe</td>
<td>Biological: Unavoidable radiation hazard to astronauts on EVA; passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk. Satellite operations: May experience memory device problems and noise on imaging systems; star-trackers problems may cause orientation problems, and solar panel efficiency can be degraded. Other systems: Blackout of HF radio communications through the polar regions and increased navigation errors over several days are likely.</td>
<td>10⁴</td>
<td>3 per cycle</td>
</tr>
<tr>
<td>S 3</td>
<td>Strong</td>
<td>Biological: Radiation hazard avoidance recommended for astronauts on EVA; passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk. Satellite operations: Single-event upsets, noise in imaging systems, and slight reduction of efficiency in solar panel are likely. Other systems: Degraded HF radio propagation through the polar regions and navigation position errors likely.</td>
<td>10³</td>
<td>10 per cycle</td>
</tr>
<tr>
<td>S 2</td>
<td>Moderate</td>
<td>Biological: Passengers and crew in high-flying aircraft at high latitudes may be exposed to elevated radiation risk. Satellite operations: Infrequent single-event upsets possible. Other systems: Small effects on HF propagation through the polar regions and navigation at polar cap locations possibly affected.</td>
<td>10²</td>
<td>25 per cycle</td>
</tr>
<tr>
<td>S 1</td>
<td>Minor</td>
<td>Biological: None. Satellite operations: None. Other systems: Minor impacts on HF radio in the polar regions.</td>
<td>10</td>
<td>50 per cycle</td>
</tr>
</tbody>
</table>

Space Weather Monitoring

Daily review of solar weather and expected impacts

Eastern Range Space Environment Situational Awareness

- **Valid:** 22 Sep 2015 0000Z
- **Today:** 22 Sep
- **3 Day Forecast:** 22 Sep, 24 Sep, 26 Sep

Space Weather Impacts Summary

- **HF Comm (YELLOW or RED):** Temporarily degraded or total loss of HF radio communications.
 - Forecast **GREEN:** 22 - 25 Sep during all hrs.
- **UHF SatComm (YELLOW or RED):** Temporarily degraded or total loss of UHF radio communications.
 - Forecast **RED (Severe Condition):** 22 - 25 Sep during night hrs.
 - Forecast **GREEN:** 22 - 25 Sep during day hrs.
- **High Alt Flight Radiation (YELLOW or RED):** Increased harmful radiation dosage to personnel in high altitude operations.
 - Forecast **GREEN:** 22 - 25 Sep during all hrs.
- **Radar Interference (YELLOW or RED):** Increased interference or false returns to surveil and poleward looking radar.
 - Forecast **GREEN:** 22 - 25 Sep during all hrs.
- **GPS Error (Single Freq):** Temporarily degraded or total loss of GPS signal.
 - Forecast **GREEN:** 22 - 25 Sep during all hrs.

Solar Region Summary

- **AXXX02 KWNF 180030**
- **Joint USAF/NOAA Solar Region Summary**
- **SRS Number 261 Issued at 0003Z on 18 Sep 2015**
- **Report compiled from data received at SWO on 17 Sep**
- **I. Regions with Sunspots. Locations Valid at 17/2400Z**
 - **Nbr Location Lo**
 - **Area Z**
 - **LL**
 - **NN Mag Type**
 - 2415 S20W16 235 0230 Egr 11 30 Beta-Gamma
 - 2418 S14E19 200 0210 Cso 07 04 Beta
 - 2419 N12E21 198 0100 Cao 06 08 Beta
- **IA. H-alpha Flages without Spots. Locations Valid at 17/2400Z**
 - **Nbr Location Lo**
 - **None**
- **II. Regions Due to Return 18 Sep to 20 Sep**
 - **Nbr Lat Lo**
 - **None**
Forecasting Space Weather for Launch

- Observe current sun spot complexity and location
- Review recent space weather events (i.e. CMEs, Solar Flares)
- Review Air Force 557 WW and NOAA Space Weather Prediction Center (SWPC) products (Goddard too!)
- Indicate Solar Weather is Low/Moderate/High on Launch Forecasts
Monitoring Space Weather for Launch

- Launch Weather Officer contacts 557 WW Space Weather Operation Center for update
- Monitor live data during the launch countdown. Report space weather to customer during periodic briefings during the countdown
- Report any trends toward or violations of customer space weather constraints
- Customer determines whether or not they will launch given the situation
Exceeding Constraints: X- or M-Class Flares Preceded

- 57% X-Class
- 25% M-Class
- 11% M- & X-
- 7% Inconclusive

- X-Class Flare Occurred
- Both X- and M-Class Flare Occurred
- M-Class Flare Occurred
- Inconclusive

June 2, 1996 – Sep 22, 2015
Example: Kodiak Launch Sep 2001

Timeline

- Sep 21: Scrub due to winds gusting to 45 knots
- Sep 22: Scrub due to mandatory telemetry radar system down
- Sep 23: Thick Cloud and low-cloud ceiling scrubbed launch
- Sep 24: Weather looked promising until X-class solar flare erupted
 - Constraint = 10 MeV Proton Flux < 10pfu
 - Result: 5 day launch delay to protect sensitive avionics
- Sep 29: Launch and successful deployment of 4 satellites
Data:
Kodiak Launch 2001

Flare
GOES X-ray Flux (5 minute data) Begin: 2001 Sep 24

Launch Delayed

Launch