

Multi-Model Ensemble Forecasts of Regional Air Quality in China

Idir Bouarar, Guy P. Brasseur, Katinka Petersen Max Planck Institute for Meteorology, Hamburg, Germany With contribution from Bas Meijling (KNMI), Mikhail Sofiev and D. Rostislav (FMI) Outline

Background

□Ensemble Model Forecasting System

Results

□ Improving Model Performance

□Next Steps

Forecasting Air Quality in China: A Challenging Task

- Air quality forecast systems rely also on meteorological models which still contain some inaccuracies in the formulation of physical processes
- Chemical (and Physical) processes are not always carefully formulated: simplified assumptions are sometimes adopted
- Large uncertainties in current emissions inventories
- Urban environment "every where!": 9 megacities of 10-25 Million inhabitants
 37 Cities over 3 Million inhabitants
- The formation mechanisms leading to severe haze episodes remain uncertain
- Complex landscape and conditions in some cities: e.g. Beijing is prone to develop stagnant conditions, because of surrounding mountains to the north of the city
- Coupling interactions between complex meteorological conditions, pollution sources, and atmospheric transformation processes

An Ensemble of 7 Models to Forecast Air Quality in China

Institute	Model	Emissions	Domain	Res.
KNMI (NL)	CHIMERE v2013	MEIC INTEX-B MEGAN	E. China: 18-50N, 102- 132E	0.25
ECMWF (UK)	C-IFS	MACCity	China: 10-49N, 75-135E	0.4
SCUEM (CN)	WRF- Chem	MEIC2010	East China: 21-44N, 104- 132E	6km
FMI (FI)	SILAM	MACCity GFAS MEGAN	E. Asia: 7-54N, 67-147E	0.25
MPI-M (DE)	WRF- Chem	HTAPv2 FINN MEGAN	E. China: 18-45N, 95-125E	0.2
Met.NO (NO)	EMEP	HTAP+MEI C (PanHam)	China: 15-55N, 90	0.125
TNO (NL)	LOTOS- Euros	MEIC Edgar	E. China: 20-45N, 105- 130E	0.125

Selected cities

- Cities with over 3 million inhabitants (37), according to 2010 census
- Most cities are covered by all models

- Currently, collected from websites (e.g. www.pm25.in):
 - 367 different cities
 - 1526 stations
- Species: O3, NO2, PM2.5, PM10 (soon CO, NO, SO2?)
- Hourly data automatically copied to KNMI database, starting from April 2015
- Ground value given is an area average, typically based on 5-12 stations

Schematic Overview Data Flow

Courtesy B. Meijling

Operational Forecasting System at MPI-M with WRF-Chem (DKRZ, Hamburg, Germany)

MarcoPolo-PANDA Forecasting Systems

www.marcopolo-panda.eu/forecast

Results

Cases:

- 1. All/Most Models Agree
- 2. All/Most Models Fail
- 3. Models Show Substantial Differences

Ensemble Model Performance

Case 1: All/Most Models Agree

PM2.5 time series [µg/m³] WRF-Chem/SCUEM

WRF-Chem SCUEM

Case 1

CHIMERE

24h average of PM2.5

Case 1

WRF/CHEM Prediction

Surface PM2.5 Concentration (ug/m3) Wind at 10m Init: 2015-11-29_12:00:00 Valid: 2015-11-29_12:00:00

WRF-Chem PM2.5 Prediction

28Nov.-02Dec. 2015

Special Haze Events in N. China

Case 3: Models Show Substantial Differences

Courtesy K. Rostislav

PM10 14 Apr. 2016 X'ian

Case 3

O3 June 2016

	Bias	r
CHIMERE	25.8	0.83
C-IFS	19.1	0.79
EMEP	25.1	0.71
LOTOS	44.1	0.74
MPI	45.5	0.72
SCUEM	74.7	0.78
SILAM	36.1	0.73
Mean	30.5	0.84
Median	29.2	0.83

Other challenging cases

Chinese new year! (Coincidence?)

PM2.5 in Beijing [ug/m³], 8 February 2016

Diurnal Variability

- Significant differences among models
- Increased bias at nighttime
- Mean/median ensemble forecast affected by individual model skills

Boundary Layer Effect in Urban Environments

Sensitivity to Emissions

T1: CONTROL T2: -50% NOx

T3: MACCity Emissions (0.5x0.5)

T4: Other PBL

Diurnal Variability of Emissions

With diurnal variation Without diurnal variation

Effect of Vertical Diffusion

CONTROL -50% NOx Kz >=10

Beijing O3 forecast

Perspectives

- Keep Running the Systems : see, in long-term, how current measures to reduce emissions are efficient
- Consistent Scientific Evaluation: Model-Intercomparison Exercise
- Get Access to Monitoring Stations and Other Observations
- Provide Other Products/Information: AQI, Other Chemical Species, Visibility, Haze
- Further Investigate Boundary Layer Impact on Pollution in Urban Environment
- Improve key model processes (e.g. SOA formation, key Met. Parameters...)
- Update anthropogenic emissions (e.g. with satellite inversions)
- Downscale to City-level

Improving Model Predictions

Life must go on ...

Devring at a park Unstanted by severe using in Payson, Drins, on Taradap