

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

Towards an unified emission system for regional dust forecast in NOAA, USA

Pius Lee¹, Georg Grell², Daniel Tong^{1,3}, Youhua Tang^{1,3}, Kayee Wong^{2,5}, Stu McKeen², Barry Baker^{1,3}, Kate Zhang^{2,5}, Ravan Ahmadov^{2,5}, and Richard Artz¹

¹Air Resources Lab., NOAA OAR Center for Weather and Climate Prediction, College Park, MD
 ²Earth System Research Laboratory, Global Modeling Division, NOAA OAR, Boulder, CO
 ³Cooperative Institute for Climate and Satellite, U. of Maryland College Park, MD
 ⁴Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA
 ⁵Cooperative Institute for Research in Environmental Sciences, U. of Colorado, Boulder CO

ARL

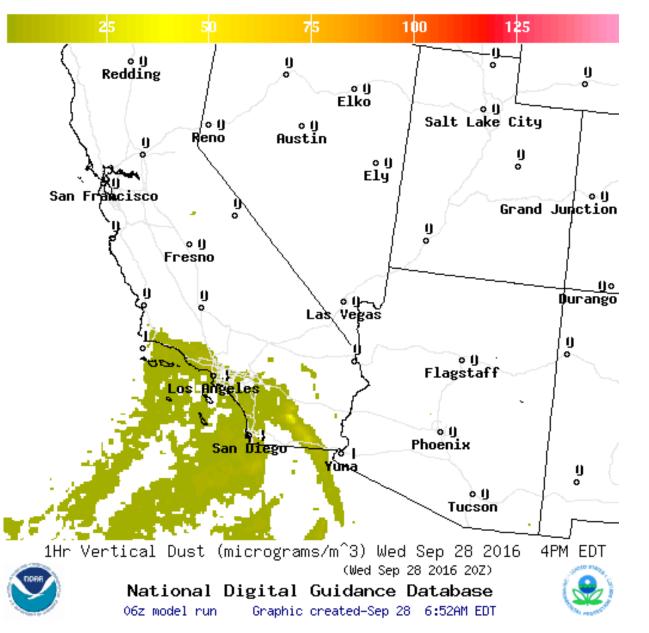
Air Resources Laboratory

Conducting research and development in the fields of air quality, atmospheric dispersion, climate, and boundary layer

Outline

National dust forecasting service in the U.S.
Upcoming NWP changes affect the service
Multiple efforts in NOAA and other institutions
Case studies and comparison
Comparison of 4 emission scheme inlined in HRRR
Summary and future work

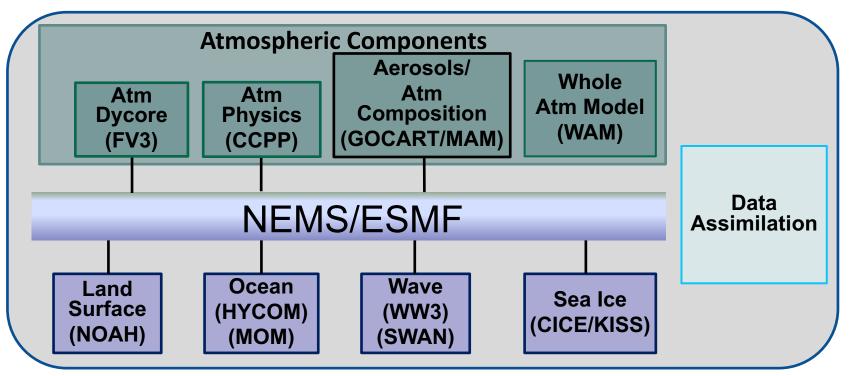
Dust Effects and Major Dust Sources


Dust Effects

- 1) Clouds and precipitation
- 2) Radiative energy balance
- 3) Atmospheric composition and chemistry
- 4) Major biogeochemical cycles
- 5) Ecosystem functioning
- 6) Socioeconomic systems and human well-being

Major Dust Sources

http://airquality.weather.gov/



•Source regions with emission potential estimated from MODIS deep blue climatology for 2003-2006 (Ginoux et al. JGR 2010) •Emissions modulated by real-time soil moisture. HYSPLIT model for transport, dispersion and deposition (Draxler et al., JGR, 2010)

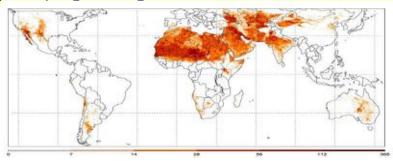
Next Generation Global Prediction System (NGGPS)

- Global atmospheric prediction model with non-hydrostatic scalable dynamics
- Improve data assimilation and physics
- Position NWS for next generation high performance computing
- Engage community in model/components development
- Reduce implementation time
- Provide World's Best Global Forecast Guidance

- Fully coupled system
- Built using NEMS/Earth System
 Modeling Framework
- Each component model will be community code

Contacts: Fred Toepfer and Ivanka Stajner

NOAA NGGPS project PI: Paul Ginoux (NOAA GFDL)


1. Dust Sources Inventory

Dust Optical Depth

Dust detection using MODIS satellite at 0.1° resolution (~10 km) daily for 12 years (2003-2014). Dust source = location of the most frequent dust events (Ginoux et al., Rev. Geophys., 2012). Unique global high resolution dust sources inventory.

nd testing or regional and

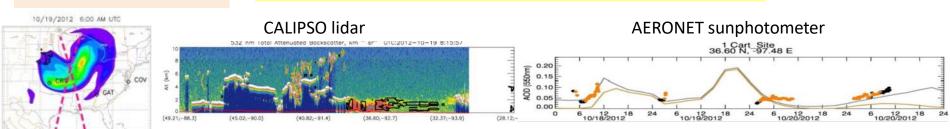
One granule of satellite pixels at a time from regional to global, daily and for 12 years of newly released MODIS data 🛛

2. Dust Simulation/forecasting

-100 025 050 075 10 20 25

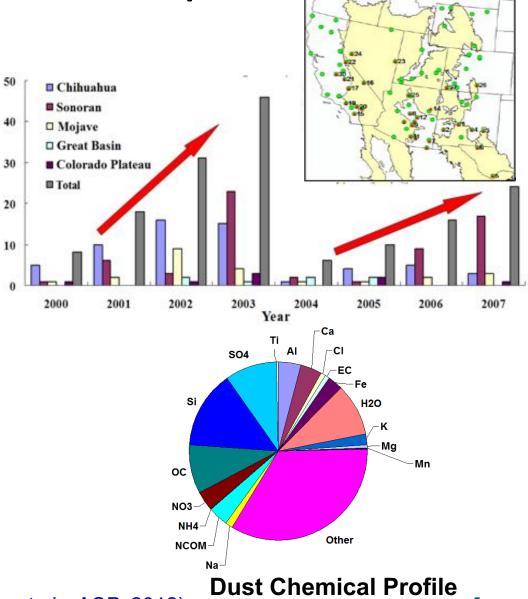
-115 -110 -105

Dust simulation with NMMB for one year (2012), global and CONUS (high resolution)


Dust events are frequent in the High Plains, creating deadly accident, shutting Interstate Highways, such as in October 2012.

3. Model Evaluation

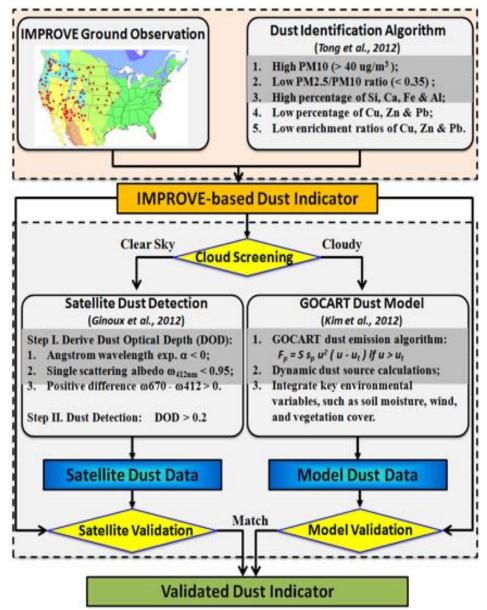
Evaluation and skill scores using ground-based and satellite data



Dust Records over the western US (2000-2007)

Table 1. Identified local dust events from the DOPROVE monitoring network from 2000 to 2007. The concentrations and rotes local in the table represent the menn values of there is more than one identified dust episode.

5084	SINED BOAPI	Longitude - 106.05	Londo 33.87	95410 (mg m ⁻³) 42,44	(mpm ⁻³) (M21 3M21	9542.57 95630 Rater 0.16	Local Dec Bream (YY)(0000) 001016	
1								
2	GBCL1	-100.24	33.22	35,59	7,78	0.22	070315	
611	SACR1	-104,4	33,45	72,15	11.91	6.22	600410, 000825, 090415, 090603, 090603,	
							091324, 050913, 051203, 040912, 040418,	
							060622.071114	
4	WHIT1	-105,54	33,47	\$9,55	28,42	0.23	000406, 060016	
5	92851	-105.18	29,3	13,25	12,36	0.34	000022, 000422, 000821, 000308, 001824,	
							020216, 020308, 020312, 020336, 020402,	
							020616, 021118, 090328, 090406, 090411,	
							051127	
5	603400	104,81	31,83	T3,2	15,63	0.22	000422, 000517, 000422, 000803, 000824,	
							000713, 001014, 020309, 020420, 020501,	
							020111, 020128, 020410, 020413, 020418,	
							690202, 690904, 690415, 690418, 690515,	
							000723, 001208, 001224, 040408, 001127,	
							060918,070223	
7	CHERI	-109,38	32,01	79,34	17,85	0.34	000408, 011109, 000521, 000717, 051127,	
							060601, 060716, 061222, 070028	
	IIGBA1	-111.48	3434	62,53	18,78	0.28	000421, 020114, 090515, 090521, 090530,	
							690726, 646963, 676412, 676728	
φ	QUVA1	-111.29	33,29	61,2	13.64	0.22	051616, 02042M, 020514, 090202, 000513,	
							000121, 000627, 000620, 000714, 000717,	
							000908, 041021, 060216, 060414, 060716	
							060725, 070418, 070708, 873018	
10	SAOUT	-110,74	32,17	37,79	10,13	0.31	011108, 030521, 050717, 080825, 070328,	
							070413	
11	LANE:	-111,22	72.25	75,59	20,28	0.25	051508, 090521, 090711, 090717, 090808,	
							070028, 070412, 070415, 070523	
12	SEAN1	-110.94	34,09	39,6	17,22	0.3	011016, 000515, 000530, 070412, 080718	
13	TONTI	-151,15	30,85	60,6	13,29	0.23	060716,070412,070708,070730,071306	
14	12203	-109,769	35,07	35,4	13	0,24	000508, 050404, 050438	
15	AOTH	-116,97	33,45	12,45	13,69	0.19	010617, 021125, 000104, 070412	
16	2613.1	-126,85	34,51	45,95	12	4,19	020508, 020511, 020528, 040905, 051228	
17	DOMS1	-118,14	35,73	65,6	6,86	8,1	30000	
18	30581	~116.38	34,07	69,56	15,97	0.37	000812, 011001, 020731, 000818, 050801, 060625	
19	54043	-118,09	34,5	45,12	6,43	0.04	21082	
20	54001	-116,91	34,19	71,09	10,97	0.16	021025,070412,070521	
21	18001	-118,83	38,45	78,61	10,08	0.08	020710.001630	
21	100013	-119.18	38.09	149,29	45,78	0.31	39238	
23	GRBA!	-114,22	39,01	104,62	18,85	0.18	30238	
24	WARL	-108,82	38,95	70,39	12,45	0.38	000821.040010.040803.050818.050822	
28	290.41	-112,13	34.04	307,06	33,39	8.3	79720	
26	GR5A3	-185,52	37,72	51,28	11,3	0,23	000517, 020511, 030503, 050403	
27	MEVEL	-108,48	37,2	45,2	13,68	0.22	000202, 000415, 050419	
14	DOUDI	-109.54	35,35	\$5,27	21.2	9.26	070928.071508	
29	998081	-432,1	30.5	16,82	13,98	0,21	001014, 030511, 030722, 030917, 050302, 050511, 030518, 030714, 030717, 030908,	
							060403, 060414, 060623, 070412, 070730	
łó	FRES1	-128,77	34.72	88,55	14.85	4,59	040811,060814,060828.061038,070812	



(source: Tong et al., ACP, 2012)

Number of Dust Cases

Dust indicator for climate assessment

Collaboration between NOAA, NASA, UTEP and southwestern air quality districts.

Extend Tong et al (2012)
 study to have a 30-year
 database of US dust activity

 Validation with more satellite products and model prediction.

Dust is sensitive to climate -- a good indicator of change.

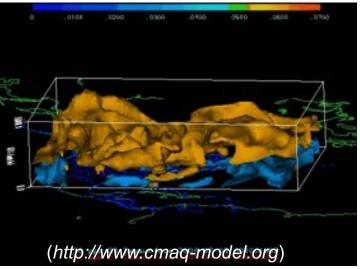
CMAQ5.0.2 Windblown Dust Emission

CMAQ (Community Multiscale Air Quality) model is the 3rd generation air quality model for EPA research and regulatory studies.

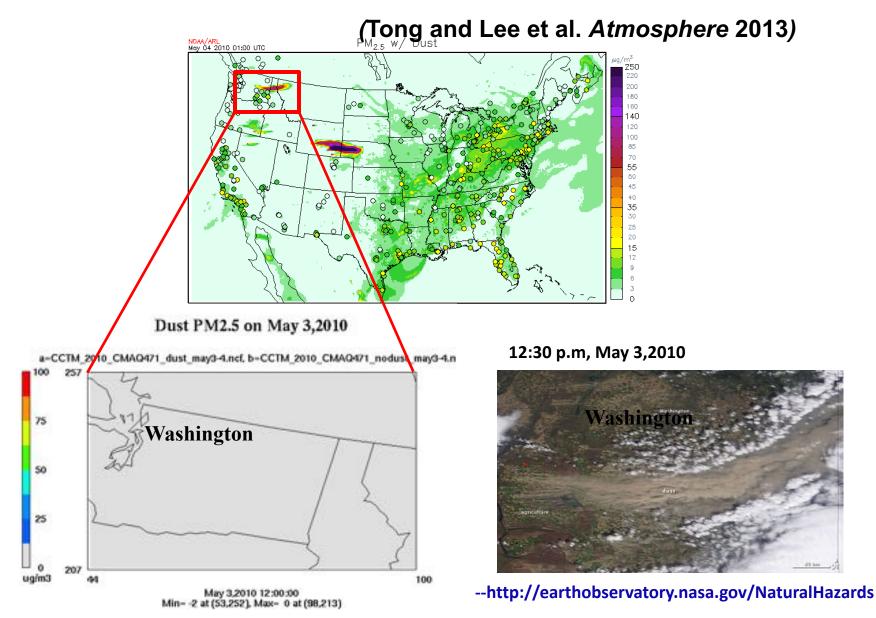
✤ > 1000 user groups world around.

11

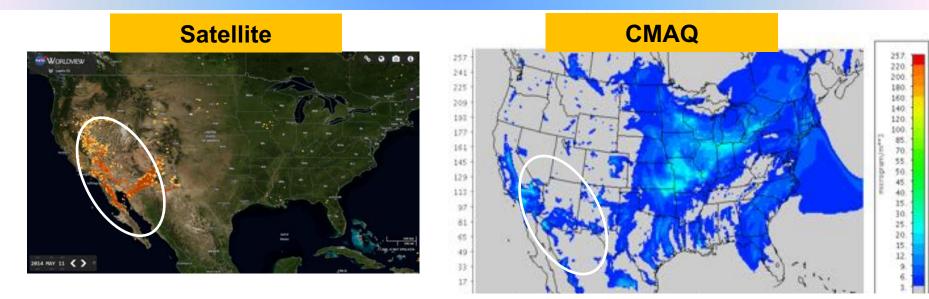
Dust is important for climate, air quality and more.


CMAQ Dust module , based on a modified Owen's Equation (*source: Tong et al, 2012*):

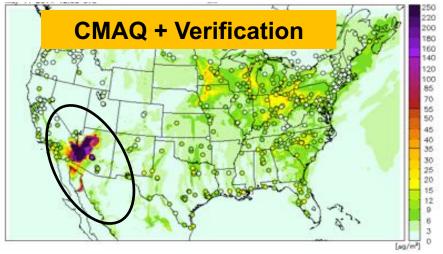
$$\mathbf{F} = \sum_{i=1}^{M} \sum_{j=1}^{N} K \times A \times \frac{\rho}{g} \times S_i \times SEP \times u_* \times (u_*^2 - u_{*_{ti,j}}^2)^{\frac{1}{2}}$$


* Effect of non-erodiable elements (Drag partition).

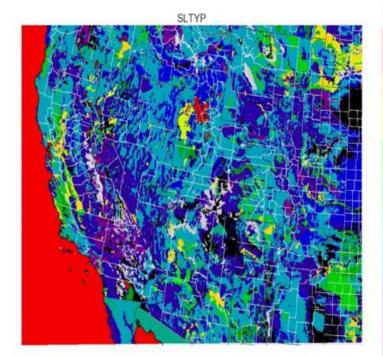
***** Effects of rain and snow (*Fecan et al, 1999*):

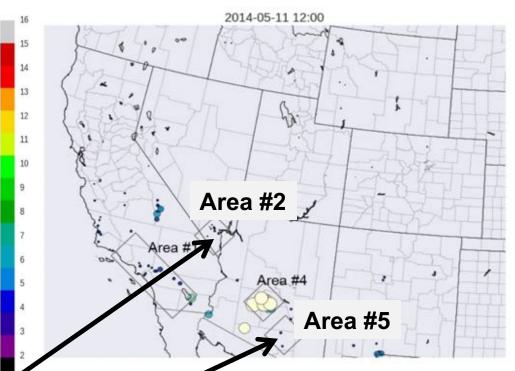

$$w' = 0.0014 * (\% clay)^2 + 0.17 * (\% clay)$$

CMAQ dust forecasting

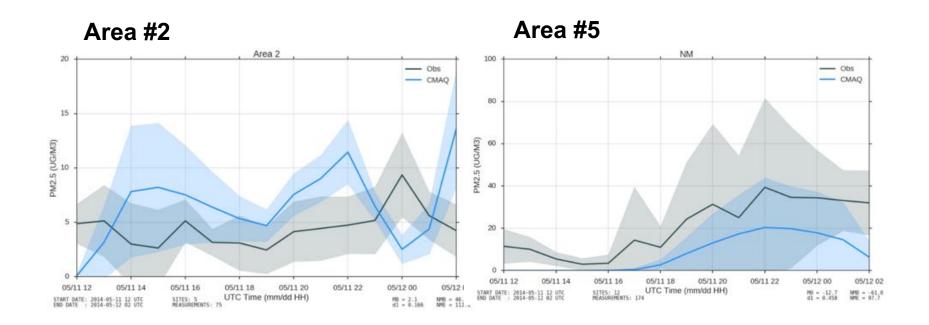


FENGSHA, CMAQ and MODIS on May 11, 2015


Modelled dust events are well consistent with satellite data.


35th ITM 3-7 October 2016, Crete, Greece

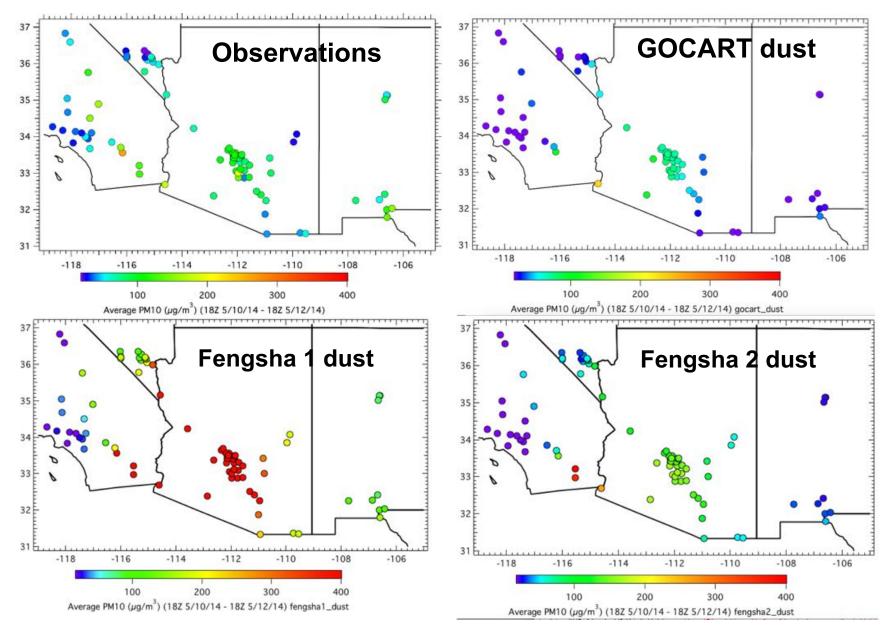
Option 1: HRRR meteorology with CMAQ5.0.2 dust model



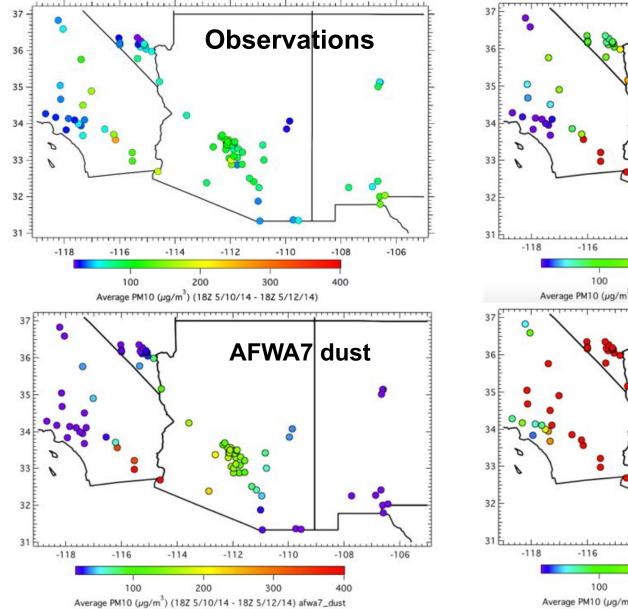
Soil type map used in HRRP

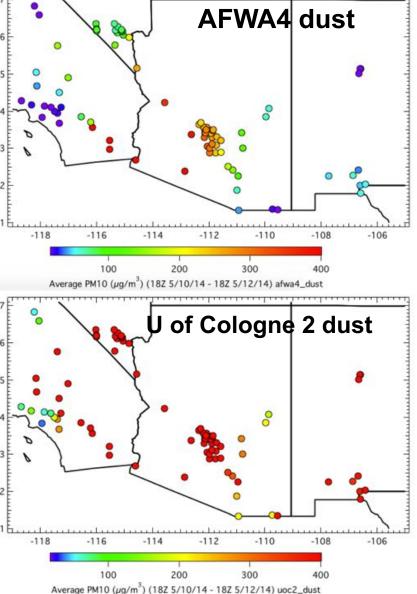
Attention is paid to **Area #2** where medium sized dust storm poses challenge for models. (**Area#5**) sees relatively larger storms on May 11 2015

Definition of areas characteristic of air-sheds and dust source regions that we used to evaluate the HRRR-CMAQ windblown dust model: (area#1) South Coast areas centered around L.A. CA; (area#2) Las Vegas and its vicinity; (area#4) Phoenix, AZ and its vicinity; and (area#5) Southern AZ across the NM border.

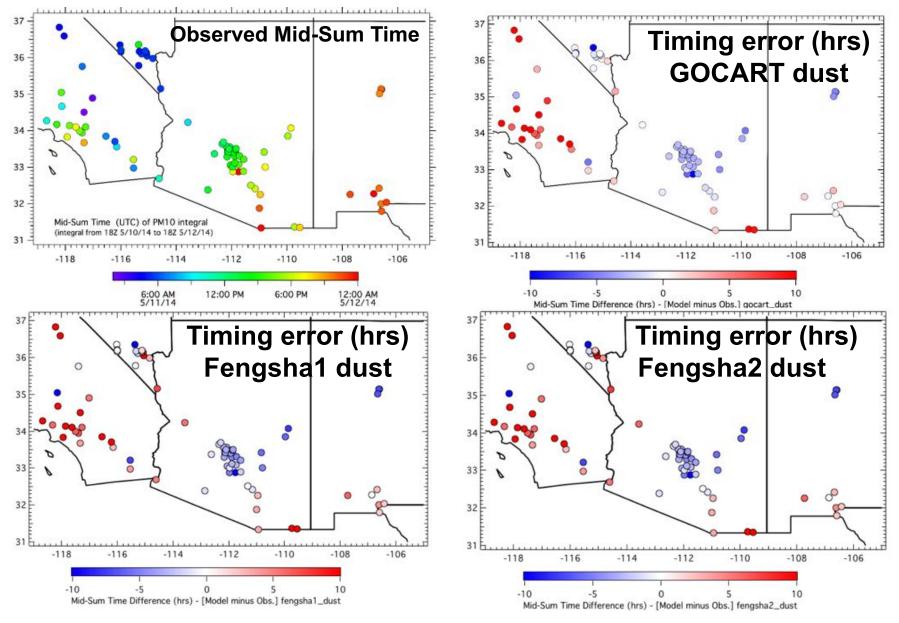


Evaluation time series for the HRRR-CMAQ windblown dust model for the May 11 2014 test case over regions depicted in previous slide for: (a) **Area#2** -- Las Vegas and its vicinity; and (b) **Area#5** -- Southern AZ across the NM border.


Evaluation of windblown dust emission scheme inlined into HRRR


Scheme	Govern Feature	Correlation coefficient	Median mod/obs	Median timing error
AFWA 4	α_{dust} =0.5 ; γ_{dust} =1.0	0.79	0.88	2.2 h
AFWA 7	α_{dust} =1.0 ; γ_{dust} =1.5	0.71	0.36	3.2 h
U Cologne (UoC2)	Dust scheme 1	0.63	1.48	2.3 h
fengsha1	USGS soil type	0.72	3.55	3.5 h
fengsha2	USDA 500m soil type	0.71	1.09	3.6 h
GOCART	Base physics (NASA)	0.67	0.50	2.8 h

Average PM10 for the 5/11/14 to 5/12/14 Dust Storm Event: Comparing HRRR/Dust model results with EPA AQS monitor data



Average PM10 for the 5/11/14 to 5/12/14 Dust Storm Event: Comparing HRRR/Dust model results with EPA AQS monitor data

PM10 timing errors for the 5/11/14 to 5/12/14 Dust Storm Event: Comparing HRRR/Dust model results with EPA AQS monitor data

Evaluation of windblown dust emission scheme inlined into HRRR

Scheme	Govern Feature	Correlation coefficient	Median mod/obs	Median timing error
AFWA 4	α_{dust} =0.5 ; γ_{dust} =1.0	0.79	0.88	2.2 h
AFWA 7	α_{dust} =1.0 ; γ_{dust} =1.5	0.71	0.36	3.2 h
U Cologne (UoC2)	Dust scheme 1	0.63	1.48	2.3 h
fengsha1	USGS soil type	0.72	3.55	3.5 h
fengsha2	USDA 500m soil type	0.71	1.09	3.6 h
GOCART	Base physics (NASA)	0.67	0.50	2.8 h

SUMMARY

- •NOAA provides national dust forecasting service in the U.S.
- •Upcoming NOAA NWP changes affect the dust forecasting service
- •Multiple efforts in NOAA and other institutions pre-position for such changes
- •NOAA OAR proposes 4 options of dust emission modules
- > Air Force Weather Agency (AFWA) previously developed in MM5
- Cologne U scheme
- Fengsha as available in CMAQ5.0.2
- Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART)
- The unification and selection task for the service is a working progress
- Preliminary results showed comparable skill by all these 4 options
- Results is sensitive to fine resolution soil data and real time moisture data

http://www.mdpi.com/journal/atmosphere/ special issues/air monitoring

Air Quality Monitoring and Forecasting

Manuscripts on the topic due June 30 2017

Guest Editors: Pius Lee, Rick Saylor, Jeff McQueen