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Introduction 
•  Turbulent mixing controls the segregation and hence the rate of 

chemical reaction of tracers  
•  Chemical-turbulence interaction is a subgrid process, and is 

often neglected by large-scale chemical transport models, 
leading to miscalculation of tracer production 

•  Subgrid chemical-turbulence interaction is investigated in a 
fundamental representation, in planetary boundary layer, and in 
an urban setting in this project 

Theory 
•  The effect of turbulent motions on chemical reaction can be 

estimated from the ratio between the turbulent and chemical 
timescales, or the Damköhler number 
 

•  For the reactions with Da << 1, the tracers are efficiently mixed 
and react with chemical timescale. For the fast chemical 
reactions with Da >> 1, the tracers are not well mixed by 
turbulence before they react, and therefore react with the 
turbulent timescale 

•  The interaction between chemistry and turbulence can be 
represented by the Reynolds averaged continuity equation1:  
 

  
, where (Ci

’,wi
’) are the turbulent components of concentration Ci 

and velocity field wi, νc is the molecular diffusivity, kij and kijk are the 
uni-molecular and bi-molecular reaction coefficient  
•  The covariance terms involve in closure problems2, such 

as                               , and are often parametrized but these 
single-valued schemes are often over-simplified and may lead to 
miscalculation of tracer production 
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Subgrid chemical-turbulence interaction:  
A fundamental representation 
Simulation settings: 
•  3D tracer advecting in turbulent field with simple chemistry  

(A + B à C) 
•  Constantly emitted sources of Tracer A   
    at centre and Tracer B at background  
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Results:  
•  With a smaller  

chemical reaction rate kc  
(slow chemistry), 
Ø  the corresponding 

Damköhler number  
Da is smaller 

Ø  tracers are less segregated 
Ø production approaches to the 

value in complete-mixing 
model 
 

•  NC is over-estimated in 
complete-mixing model except 
for very slow chemistry 

 

Application to the region of Hong Kong 
•  Complex topography: Hilly terrains, the largest numbers of 

skyscrapers in the world, coastal location à Turbulence  
•  Substantial supply of pollutants: Intense urbanization, the 

“World’s Factory” in the adjacent Pearl River Delta à Chemistry  
•  Inhomogeneous emission: Complex landuse, greenlands between 

urban areas, heavy transport network 
•  High-resolution chemical transport modeling with resolution up 

to 100 m and surface topography will be employed to study the 
chemical-turbulence interaction in the city 

•  The results from this study can then be compared with the local 
observational data and other related studies done in other scales  

Application in planetary boundary layer 
Simulation settings: 
•  Direct numerical simulation3 with simple chemistry (A + B à C) 
•  Entrainment of Tracer A from free troposphere and Tracer B from the 

surface 
Preliminary results: 

Next steps… 
•  DNS simulations with NOX-O3 chemistry scheme 
•  LES simulations with urban-rural emission inhomogeneity 
•  Simulations with WRF-Chem coupled to LES in Hong Kong with 

complex urban and terrain topography 

Aerial photo of Hong Kong: 
the photo shows the south-
west region of the New 
Territories and part of the 
Kowloon Peninsula and the 
Hong Kong Is land. The 
topography of Hong Kong is 
complicated with hilly terrains, 
a n e x t e n t o f h i g h - r i s e 
buildings and its surrounding 
South-China Sea, making the 
region a highly turbulent 
urban area.  
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•  Inhomogeneous 
production of 
Tracer C that 
relates to the 
regions of 
updrafts and 
downdrafts 

•  Turbulence-
dependent 
production of 
Tracer C for  
fast chemistry 
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Evaluation parameters: 
1.  Intensity of segregation between Tracer A & B IS,AB  
2.  Normalised total amount of Tracer C produced NC/NC,ref, where 

NC,ref is from the complete-mixing model 
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