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1. WRF-Chem/DART: An Introduction

WRF-Chem/DART is a community resource for real time chem-
ical weather data assimilation/forecast research. It couples the
Weather Research and Forecasting model (WRF) with online
chemistry (WRF-Chem) and the Data Assimilation Research
Testbed (DART). DART has been modified to include assimilation
of in situ and remote/satellite observations of atmospheric com-
position. Specifically, WRF-Chem/DART assimilates:

• MOPITT and IASI total and partial column CO;
• IASI total and partial column O3 (under development);
• OMI total column NO2 (under testing); and
• MODIS AOD retrievals (under testing);
• AirNOW in situ observations (under testing);
• State variables localization;
• Constraining emissions with the State Augmentation Method

(SAM); and
• Real-time scripting system;

WRF-Chem is a state-of-the-art numerical forecast model that
simulates the emission, transport, mixing, and transformation
of trace gases and aerosols simultaneously with meteorology.
It is used for investigating regional air-quality, preparing field
program analyses, and studying cloud-scale chemical interac-
tions. WRF-Chem development is a collaborative effort between:
NOAA/ESRL, DOE/PNNL, NCAR/ACOM, and various universi-
ties. It is well documented and contains an educational platform.

DART is a community resource for ensemble data assimilation
research developed at NCAR/IMAGe. The Ensemble Adjust-
ment Kalman Filter (EAKF) is DART’s primary assimilation engine.
DART contains other ensemble Kalman filters (EnKFs) as well as
adaptive inflation, adaptive localization, and many data assimila-
tion research utilities. DART is well documented and contains an
interactive educational platform.

2. Recent Advances in WRF-Chem/DART

WRF-Chem/DART development is a collaborative effort between
NCAR/ACOM, NCAR/IMAGe, and various universities. WRF-
Chem/DART’s recent advances include:

• Comparison of CPSR assimilation results with independent
FRAPPE and IAGOS in situ observations and IASI CO re-
trievals;

• Extension of “compact phase space retrievals” (CPSRs) from
assimilation of full retrieval profiles to assimilation of truncated
retrieval profiles;

• Use of the the CPSR algorithm for analysis of retrieval assimi-
lation results; and

• Quasi-realtime application of WRF-Chem/DART in
FRAPPE/DiscoverAQ and PANDA.

3. CPSRs for Retrieval Partial Profiles

Mizzi et al. (2016) derived CPSRs for assimilation of full retrieval
profiles, i.e., all elements of the retrieval profile, even bad obser-
vations were assimilated. Such bad observations should be dis-
carded prior to the assimilation step to reduce: (i) computational
costs; and (ii) analysis errors. Mizzi et al. (2017a) extend CP-
SRs to the assimilation of truncated retrieval profiles. Mizzi et
al. (2017a) derive CPSRs the same way as Mizzi et al. (2016) ex-
cept they discard known bad observations prior to application of
the compression and diagonalization transforms. Their derivation
is as follows:

The quasi-optimal form of the retrieval equation is

yr − (I−A)ya − ε = Ayt. (1)

where yr is the retrieval profile (dimension n), A is the averaging
kernel (dimension n × n), yt is the true atmospheric profile (un-
known; dimension n), I is the identity matrix (dimension n×n), ya
is the retrieval prior profile (dimension n), and ε is the measure-
ment error in retrieval space (dimension n) with error covariance
Em – the measurement error covariance (dimension n × n). We
begin by discarding the m elements of yr that are bad observa-
tions. The resulting dimension of the truncated retrieval profile
yr is n − m. We also discard the corresponding rows of A, and
the corresponding rows and columns of Em. The resulting dimen-
sions are (n −m)×n, and (n −m)× (n −m) respectively. Due to
Mizzi et al. (2016)‘s use of singular value decompositions (SVDs)
for the compression and diagonalization transforms, the rest of the
derivation is the unchanged. This approach reduces the compu-
tational cost of assimilating CPSRs beyond that obtained in Mizzi
et al. (2016) by a factor of (n −m)/n.

4. Assimilation of Trace Gas Retrievals

Figure 1 based on Mizzi et al. (2016; 2017a) shows that assimila-
tion of MOPITT CO CPSRs improves the CO forecast skill when
compared to: (i) not assimilating CO observations (Met EX); and
(ii) assimilating raw CO retrievals (VMRR EX and L10VMRR EX).
Note: that VMRR denotes retrievals in volume mixing ratio (VMR)
units, and L10VMRR denotes log10(VMR) units.
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Figure 1: Verification scores comparing CSPRs with other for-
ward operator forms .

Those results hold when compared against: (i) the assimilated
observations (MOPITT CO - right panel); or (ii) independent ob-
servations (IASI CO - left panel). Phase space retrievals performs
better than raw retrievals because the phase space transforma-
tions truncate the observation errors. QOR EX and CPSR EX
perform similarly, but CPSR EX does so with a computational cost
reduction of (∼35 %).
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Figure 2: Time average analyses (upper row) and increments
(lower row) at 950 hPA for independent (MPnXX, XXnIA) and joint
(MPnIA) assimilation of MOPITT and IASI CO CPSRs. The study
period is June 1, 2008 00 UTC to June 10, 2008 00 UTC with
cycling every 6 hrs.

Figure 3: Time average retrievals for MOPITT (upper row) and
IASI (lower row).

Figure 2 looks at the independent and joint assimilation of MO-
PITT and IASI CO CPSRs. The results from all experiments are
similar, but the joint assimilation (MPnIA) results resemble the in-
dependent MOPITT (MPnXX) results more closely than the inde-
pendent IASI (XXnIA) results due to the relative magnitude of the
observation errors. Figure 3 shows the assimilated MOPITT and
IASI CO retrievals at several pressure levels to account for topo-
graphic masking. Generally, the analyses and increments in Fig. 2
resemble the assimilated retrievals in Fig. 3.

Figure 4 shows vertical profiles for the same experiments. When
compared against assimilated observations, Fig. 4 shows that
the chemical assimilation experiments (Chem EX) perform better
than the control experiment (Met EX) throughout the troposphere.
When compared against independent (IASI) observations, the as-
similation of MOPITT CO degrades WRF-Chem performance in
the upper troposphere. That occurs because MOPITT CO may
have a bias of ∼14 % above 250 hPa. That result highlights the
need to remove bad observations from the retrieval profile.

Figure 5 shows results from discarding the biased MOPITT ob-
servations based on assimilation of raw retrievals (L10VMRR-RJ3
EX) and CPSRs (CPSR-RJ3 EX). The results show that: (i) both
experiments behave similarly; (ii) discarding biased observations
improves agreement with IASI in the upper troposphere (locally);
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Figure 4: Vertical profiles for independent and joint assimilation
of MOPITT and IASI CO compared against MOPITT CO (upper
row) and IASI CO (lower row). RS denotes retrieval space, and
SS denotes state space.

but (iii) degrades agreement in the middle and lower troposphere
(remotely). Those remote impacts are troublesome and related
to the non-local nature of the averaging kernel and phase space
transform functions.

40 60 80 100 120 140

100

200

300

400

600

800

1000

Forecast L10VMRR−RJ3 EX

VMR (ppb)

Pr
es

su
re

 (h
Pa

)

40 60 80 100 120 140

100

200

300

400

600

800

1000

Forecast CPSR−RJ3 EX

VMR (ppb)

Pr
es

su
re

 (h
Pa

)

40 60 80 100 120 140

100

200

300

400

600

800

1000

Forecast L10VMRR−RJ3 EX

VMR (ppb)

Pr
es

su
re

 (h
Pa

)

40 60 80 100 120 140

100

200

300

400

600

800

1000

Forecast CPSR−RJ3 EX

VMR (ppb)

Pr
es

su
re

 (h
Pa

)

Figure 5: Vertical profiles for experiments discarding MOPITT CO
above 250 hPA compared with MOPITT CO (left two panels) and
IASI CO (right two panels).

5. Constrained Emissions
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Figure 6: Vertical profiles for experiments assimilating MOPITT
CO with constrained emissions compared against MOPITT CO
(upper row) and IASI CO (lower row).

Mizzi et al. (2016) concluded that the WRF-Chem emissions are
likely: (i) too high in polluted areas; (ii) too low in non-polluted ar-
eas; and (iii) the near-surface horizontal averages are dominated
by the non-polluted areas. In this section we use the state aug-
mentation method (SAM) to adjust those emissions. SAM uses
ensemble cross-correlations between the expected observations
and emissions to adjust the emissions during the assimilation
step. Figure 6 shows results from those experiments. Gener-
ally, the constratined emissions are most sensitive to VMR re-
trievals (RAWR EINV) and CPSRs (CPSR EINV). Those sensi-
tivities are present when compared to the assimilated (MOPITT)
or independent (IASI) observations. The near-surface improve-
ments are most apparent for CPSR EINV and are consistent with
the conclusions of Mizzi et al. (2016) because there are emission:

(i) reductions in polluted ares; (ii) increases in non-polluted areas;
and (iii) the near-surface averages are increased.

6. Real Time WRF-Chem/DART Applied to FRAPPE

One goal of WRF-Chem/DART is issuing real time chemi-
cal weather forecasts. To that end we are collaborating with
Dr. Gabriele Pfister of NCAR/ACOM to apply WRF-Chem/DART
in quasi-real time to FRAPPE. For that application we use 30 en-
semble members and dual-resolution cycling where: (i) ensemble
data assimilation and forecasting occur on a 15 km grid; and (ii)
deterministic high-resolution air quality forecasting occurs on a 3
km grid with cycling every 6 hrs and assimilation of MOPITT CO.
Our FRAPPE study period is July 14, 2014 to Aug 5, 2014. Pre-
liminary results are shown in Figs. 7 and 8.

Figure 7: Vertical profiles of CO forecast statistics based on
FRAPPE in situ observations.

Figure 7 shows vertical profiles of the mean and median on the
left and relative error on the right. Both panels show that assimi-
lating MOPITT CO (Chem-DA) yields significant improvements in
the WRF-Chem CO forecasts compared to the control experiment
(Met-DA).

Figure 8: Real Time WRF-Chem/DART Control (Met-DA) and
Chemical Data Assimilation (Chem-DA) Fine Grid Forecasts.

Figure 8 compares the Met-DA and Chem-DA fine grid forecasts
(vertically averaged for the boundary layer). We chose this day
because it shows the CO-trapping effect of the Denver Cyclone.
Generally, the results are similar, but Chem-DA shows reduced
magnitude and spatial extent for the cyclone feature. Those re-
sults are consistent with the conclusions of Mizzi et al. (2016)
which suggest that the WRF-Chem emissions are too strong in
polluted areas.

7. More Information

For information on using WRF-Chem/DART or on chemical data
assimilation in general, contact Dr. Arthur P. Mizzi by e-mail at
mizzi@ucar.edu or by phone at 303-497-8987.
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