PROGNOS: A new MSC initiative to renew the operational statistical post-processing infrastructure

Andrew Teakles¹, Jonathan Baik¹, Jacques Montpetit², Stavros Antonopoulos², Christian Saad², Naysan Saran²

¹Prediction Services Directorate, Meteorological Service of Canada (Halifax, Vancouver)
²Canadian Centre for Meteorological and Environmental Prediction Directorate, Meteorological Service of Canada (Dorval)

Introduction

PROGNOS is an initiative to renew the operational statistical post-processing infrastructure to accommodate evolving meteorological and air quality forecast program requirements and to improve compatibility with the NextGen forecast systems. Some PROGNOS features presented here are still under development and may differ in the final implementation.

Rationale:
- Difficult to adapt the existing system (UMOS) to frequent NWP updates due to design limitations.
- Reduce system maintenance costs.
- Ability to apply new modeling strategies.
- Better serve research and development projects.

INTERNAL/EXTERNAL DATA SOURCES

Meteorological Forecast Models

- Real-time Observations
- Meteorology Air Quality

CMC Archives

Calculation Repository

Data Centre

- SQL Database
- Gridded Data

Data Ingest

Data Drive: Meteorological Forecast are interpolated to observation locations based recent availability and covariate predictor variable are also generated at those location as needed.

Metadata on the geographical location, observation type, data quality, and data source is maintained to facilitate further data treatment and record matching by PROGNOS.

Station TS records: Time series (TS) of observation and predictors are matched over the record history and archived by station. Station TS records allow PROGNOS to have more control on data treatment and machine learning techniques.

Modular Modelling

The **MAESTRO** suite provides a modular structure for statistical modeling. **Generalized templates** for data treatment, modelling and forecasting tasks can be customized using the MAESTRO configuration settings, leveraging a collection of PROGNOS scripts that use functions within the calculation repository.

PROGNOS R package was developed to provide specialized functionality to tasks that fit within the framework of the PROGNOS system enabling easy prototyping with plug-in components.

Data Treatment

Pre-Processing
- Filters (QA/QC, Completeness)
- Predictor Generation
- Antecedent (lag) Predictors
- Transforms (if desired)
- Data normalization

Case Weights can adjust the importance of cases based on their number, seasonality, and forecast performance.

Calculation Engine

Calculation Control

- Config Files
- MAESTRO Sequencer

Data Repository

- Data Treatment
- Machine Learning

Machine Learning

PROGNOS adopts higher level languages (R, Python) with extensive statistical modeling libraries to support machine learning. Prototype methods were run twice-daily for air quality (O₃, NO₂, PM₂.₅) in support of the 2015 Toronto Pan Am and ParaPan Am Games.

Current Prototypes:
- Random Forest
- Linear Regression
- Kalman Filter

Predictor Selection:
- Stepwise Regression using the R " leaps" package

Future Work

- Experimental run with linear model designs
- Evaluate new modeling strategies for air quality and meteorology
- Prototype statistical ensemble forecast products
- Support the development of gridded post-processing methods

Product Generation

Forecast dashboard provides multi-product overview and AQHI products using JavaScript enabled interactive charts.

Existing Operational Products will also be supported by PROGNOS to provide MIST interpolated forecast, Scribe, and NextGen products to operational meteorologists and clients.

Machine Learning

- Random Forest
- Linear Regression
- Kalman Filter

Future Work

- Experimental run with linear model designs
- Evaluate new modeling strategies for air quality and meteorology
- Prototype statistical ensemble forecast products
- Support the development of gridded post-processing methods

Timeline

- 2015 • Pan Am Demo
- 2016 • PROGNOS Initiated
- • MAESTRO
- • Extended to Meteorology
- 2017 • New Data Ingest
- • Modeling Capacity
- • Document Demo
- 2018 • Experimental