Recent Developments in Airborne Radiometric Measurements from NSF/NCAR Aircraft

NSE

¹Earth Observing Lab, National Center for Atmospheric Research ²Atmospheric Chemistry Division, National Center for Atmospheric Research ³Naval Research Lab, Monterey CA

I. Introduction

Measurements of the solar and terrestrial radiation spectra from aircraft have numerous applications to climate-related studies. Recent developments of various passive radiation sensors for use on the NCAR/NSF C-130 and Gulfstream V (GV) aircraft offer new capabilities for radiation budget studies, investigation of photochemical processes, and interpretation of trace gas, hydrometeor, and aerosol measurements.

Energy transfer through horizontal layers is characterized by two spectrometers which provide visible to near-IR irradiance measurements from the GV. In addition to these spectrally resolved measurements of irradiance, a set of (broadband) pyrgeometers extends the observations into the IR portion of the spectrum. Pyrgeometers are also available on the C-130. New pyranometers have been acquired for making broadband irradiance measurements from the C-130 in the visible wavelengths as well. Work is underway to develop stabilized platforms for these sensors to

compensate for aircraft attitude changes.

In addition to irradiance measurements, spectrally resolved actinic flux measurements from the GV provide spherical radiances used to determine photolysis rates.

Finally, measurements of emitted radiation on oxygen absorption lines are acquired by the Microwave Temperature Profiler. Temperature profiles from above and below the GV are retrieved from these observations, providing meteorological context for a variety of measurements made by other instruments.

Gulfstream V

- Visible irradiance (spectrally resolved, stabilized platform)
- *IR irradiance (broadband)*
- Actinic Flux
- Remote temperature profiles

C-130

- Visible irradiance (broadband, stabilized platform)
- *IR irradiance (broadband)*

II. Irradiance

Flat Plate or Integrating Sphere

Measures Energy Flux through a plane

Cosine response (i.e., insensitive to photons from 90 deg)

Many uses in radiative transfer including **Net Irradiance** (difference between downwelling and upwelling)

III. Actinic Flux Frosted Dome Measures Energy Flux through a sphere • Concentric domes • UV-VIS 280-680 nm • 0.8 nm sampling • FWHM 1.7 @ 297 nm, 2.4 @ 400 nm

Equally responsive to photons from all directions

Total Actinic Flux (sum of downwelling and upwelling) also known as spherical radiance

Molecules (and people) are 3-D and can absorb photons from any direction

IV. Remote Temperature Profiles

Microwave Temperature Profiler (MTP)

- Measures emission in oxygen absorption bands
- Scans through 10 elevation angles between nadir
- and zenith
- Calibration system uses heated blackbody target and ambient air temperature

Specifications

- Profile available every 17 seconds
- 100 m vertical resolution near aircraft
- Measurement uncertainty ~0.5 to 1.5 K within +/ 6km of flight level

Scientific Applications

- Meteorological context for measurements made by other instruments
- Interpretation of trace gas, hydrometeor, and aerosol measurements
- Validation of satellite temperature field measurements
- Real-time flight planning (e.g., tropopause location)

MTP fairing with high-density polyethylene window. The Ultra High Sensitivity Aerosol Spectrometer (UHSAS) is mounted next to MTP.

VI. Measurement Examples

Actinic flux as measured by the CCD Actinic Flux Spectroradiometer (CAFS) compared to values obtained from the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model.

Temperature curtain plots from a series of arctic flights during HIPPO. Tropopause height (white trace) and aircraft altitude (black trace) are indicated.

References

Bucholtz, Anthony, Robert T. Bluth, Ben Kelly, Scott Taylor, Keir Batson, Anthony W. Sarto, Tim P. Tooman, Robert F. McCoy, 2008: The Stabilized Radiometer Platform (STRAP)—An Actively Stabilized Horizontally Level Platform for Improved Aircraft Irradiance Measurements. *J. Atmos. Oceanic Technol.*, **25**, 2161–2175.

Hall, S., R. Shetter, and K. Ullman, S. Schmidt, Atmospheric Radiation Investigations and Measurements, http://www.nar.ucar.edu/2008/ESSL/catalog/acd/shetter.php

M.J. Mahoney and Richard Denning, A State-of-the-Art Airborne Microwave Temperature Profiler (MTP), Proceedings of the 33rd International Symposium on the Remote Sensing of the Environment, Stresa, Italy, May 4-8, 2009

Acknowledgments

NCAR is sponsored by the National Science Foundation

Remote Temperature Profiles

Temperature anomaly in Tropical Storm Karl on 14 Sept 2010 as derived from MTP temperature profiles vs. GFS temperature analysis. A warm anomaly (orange) is evident in the center of Karl. Image provided by Chris Davis and David Ahijevych.