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Cryosphere encompasses sea ice, lake ice,
river ice, snow-cover, glaciers, ice-caps, ice-
sheets, frozen ground, permafrost
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From: http://upload.wikimedia.org/wikipedia/commons/b/ba/Cryosphere_Fuller_Projection.png
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Cryosphere-atmosphere interactions
exist at various scales

Cryosphere affects energy budget

« by exchange of heat, moisture and matter
» Short-term (weather) heat, moisture major drivers
* Long-term thawing permafrost releases CH,
=Radiation
=temperature
=feedback to more thawing
* Long-term changes in sea-ice extend
=>altered exchange of heat, moisture, bromine
=changes in vegetation, air chemistry

« via albedo-temperature feedback
* Decreasing (increasing) snow-cover, glaciers, sea-ice
=decreased (increased) albedo
=warming (cooling)
=Changes in vegetation

« Thermal properties of snow-packs change during a season

« Position/extent of sea-ice affects storms
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Cryosphere is |m¥>ort component in the
earth climate syste
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Sub-systems of cryosphere have
already different time scales

Frozen water (lakes, rivers, active layer, snow) has time-
scales of hours to seasonal

» But freeze-up/break-up processes driven by large-scale and local
weather conditions

« Snow-cover has potential decadal and longer time-scale climate-
system feedbacks due to impacts on temporal/spatial soil-moisture
distribution

« Sea-ice has time scales of one to several years

« Glaciers, ice-sheets, ground-ice have remained frozen for
10-10000y or longer

- lce-cover exhibits much greater regional-scale inter-
annual than hemispherical variability
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Time of impact of cryosphere sub-
systems varies among sub-systems

« Snow-cover has greatest impact on the
Earth radiative balance in April-May
« Snow-breezes (spring, fall)

« Show-cover extent modulates the
monsoon
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Cryosphere affects water balance

« Seasonal snowpacks affect
 soil moisture
» depth of the active layer
e river discharge (e.g. 85% of annual runoff in
Colorado River basin from snowmelt)
- Blue and green water recharge

« Collapses of the West Antarctic Ice Sheet
(grounded on bedrock below sea level) has
potential to raise sea level

* Moisture supply to the atmosphere
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Data of state variables and fluxes are
needed for earth system model
evaluation/development

- Simulations show that one can obtained the same values
of state variables with different fluxes

« Capturing the state variables are necessary conditions,
capturing the fluxes are required conditions

= Measure both state quantities and fluxes to close energy,
and water balances
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Data needs to describe cryosphere sub-systems

Parameter units needed/available temporal spatial vertical source
accuracy resolution resolution resolution
Snow-cover %, km” 10% d,m,y 10m-25km | N/A ASTER, AVHRR, ETM, TMradarsat, landsat,
MODIS, AMSR-E, SSM/I, ERS, JERS, SPOT
Snow-depth m 10% (0.05m/0.2m) d 30m-12km | 0.05m AMSR-E, SSM/I, radarsat, ERS, JERS
Snow-water mm 10%, 2.5-25mm d 10m-12km | 0.005-0.5m | SAR, AMSR-E, SSM/I, radarsat
equivalent
Soil temperature K 0.2K h-d ? variable w. | various monitoring networks
depth
Soil ice - - - - - indirectly via soil temperature
Sea-ice/glacier extent | % 7% d,w, m 12km N/A AMSR-E (11), AVHRR, ASTER, MODIS, TM
Ice displacement m 1km/300m w 5km N/A MODIS, radarsat, buoys
Ice deformation 1/s 0.5%/0.1% w 5km N/A MODIS, radarsat, buoys
Ice thickness | m 0.505m y 100m-1km | 1-10m SAR
distribution
Sea-ice concentration | % <10% d 20km N/A AMSR-E
Cloud-ice - - d 1km - MODIS, aircraft
Cloud-ice effective | - 10% d 1km MODIS, aircraft
particle radius
Ice crystal precip - - - - ICESat, aircraft
Ice surface | K 1K d 1-100km ASTER, AVHRR, TM, MODIS, AIRS, buoys,
temperature stations
Ice thickness | 1/m 10%/50% - - - sonar,radarsat
distribution
Freeze-up/break-up DOY d d 1-5km N/A MODIS, AMSR-E, SSM/I, stations
date
Soil freeze/thaw cycle | - - h,w,fully |- - ERS, JERS, radarsat, AMSR, SSM/I, stations
Fluxes Wm'zz, 10-20% (?) h,m,y ? N/A ARM, AmeriFlux, EuroFlux, stations (?)
kg/m“/s
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Cryosphere relevant quantities have to

be cataloged

o Variou_s soil-vegetati_on models can
deal with organic soil

= Results show different freezing/thawing
behavior for organic and mineral soils

= Data base for spatial organic soil
distribution is needed

- Sensitivity studies and Gaussian
error propagation techniques show
soil parameter uncertainty affects
simulated permafrost temperatures,
heat and water fluxes

= Datasets of distribution of individual soil
parameters (pore-size distribution index,

porosity, heat capacity, thermal diffusivity,
etc.) would be even better

Modified after Mélders and Walsh (2004)
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Vegetation cover also affects
permafrost and the active layer

« Modeling experiment with same meteorological forcing,
but different vegetation cover

= vegetation type affects active layer depth, permafrost

= assessment of permafrost changes needs detailed
vegetation distribution data
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Field campaigns were suitable to develop
models for understanding sub-system
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Processes

« Allowed
 Model development
 Model evaluation

 Model intercomparison
for better understanding

* Identify gaps in
understanding/modeling
* Identify further data
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Routine monitoring data provided hints at
possibly “missing” cryosphere processes

« MMS predicted to high
snow depth increase

« |ncorrect sea-ice
distribution led to too
much evaporation from
the Baltic Sea

= Too much snowfall in
Finland for all model
setups

From: Narapussetty and Mélders (2006) . ‘f NE %5 ;,, ne >F

UNIVERSITY OF ALASKA FAIRBANKS "AF



Routine monitoring data provided hints at
possibly “missing” cryosphere processes
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Modified after: Narapussetty and Mélders (2005)
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Existence of sea-ice has consequences
for SST and exchange of heat and matter

; NOT_CLIM — CLIM mean difference
' g 2] .5 for(left) sea-ice fraction, and (right)
e ¢ b ; SST (K). From: Moreira 2011
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Sea-ice distribution led to extreme polar low
of 2008 => knowledge of sea-ice distribution
critical to capture polar lows
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Climate system approach puts forward
new challenges for data

 Traditional LAOF instruments, platforms,
services emphasize microscale, mesoscale
and synoptic scale meteorology, air
chemistry

 Climate system research needs long time-
series to assess ability to capture changes

* Not feasible with individual field campaigns
- Data must cover a large spatial scale, if not the earth
- Data of more than one system may be needed

 First steps have been made
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Long time series and gridding allows
understanding climatic behavior/distribution,

identify changes

. L% R
In former USSR soil temperature-’\}i}w; ol e
measurements for more than 50 .~ ¥
years

Gridding to 2.8°x2.8° to determine
soil climatologies (Zhang et al. 4.
2005)
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From Zhang (2005, pers. com.)
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= From: PaiMazumder and Mélders (2009)
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simulated soll temperature (K)

Intelligent data processing procedures offer
opportunity to use data for Eurposes other
than they were originally taken for
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In former USSR soil temperature measurements for agricultural purposes
>50y of time series

g(giéjd)ing to 2.8°x2.8° for use in climate model evaluation (Zhang et al.
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Combination of multiple datasets may lead to
more than just looking at them independently
or individually

« models may performed well offline, but may do differently inline

- Errors in other components may lead to errors in the quantity of
interest (e.g. snow-depth. snow-temperature, soil-temperature, cloud-
ice fraction, precipitation)
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Some observed changes in a system can
only be explained by changes occurring in
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Network design and density play a role for capturing
Imatologies correctly

regional c
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CCSM3.0, WRF and randomly
chosen 500, 400, 200,100 WRF grid

WRF-data as “grand truth”
Randomly designed networks

Calculate regional averages on
2.5°x2.5° grid, region

Real, biased network provides
the greatest error
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Threefold strategy is needed

« Develop methods to use and extent existing data for new purposes
 Digitize printed data
* Modeling friendly data storage (i.e. fill in days, hours with missing data instead
of just listing the days, hours with measured data)

 How to deal with “biased” networks (e.g. measurements only in fertile soils”?

* How to deal with unknowns/missing parameters/quantities needed for model
evaluation/development?

« Develop and implement intelligent observational strategies that serve
multiple disciplines

* to enhance existing data
 to be able to answer system questions
=We have to go beyond thinking in our own discipline

« Measure both state quantities and fluxes to close energy
and water balance
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