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Cryosphere encompasses sea ice, lake ice, 
river ice, snow-cover, glaciers, ice-caps, ice-
sheets, frozen ground, permafrost 
 

From: http://upload.wikimedia.org/wikipedia/commons/b/ba/Cryosphere_Fuller_Projection.png 
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Cryosphere-atmosphere interactions 
exist at various scales 
Cryosphere affects energy budget  
•  by exchange of heat, moisture and matter 

•  Short-term (weather) heat, moisture major drivers 
•  Long-term thawing permafrost releases CH4  
⇒ Radiation 
⇒ temperature  
⇒ feedback to more thawing 
•  Long-term changes in sea-ice extend  
⇒ altered exchange of heat, moisture, bromine  
⇒ changes in vegetation, air chemistry 

•  via albedo-temperature feedback 
•  Decreasing (increasing) snow-cover, glaciers, sea-ice 
⇒ decreased (increased) albedo  
⇒ warming (cooling) 
⇒ Changes in vegetation 

•  Thermal properties of snow-packs change during a season 

•  Position/extent of sea-ice affects storms 
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Cryosphere is import component in the 
earth climate system 

From: http://eospso.gsfc.nasa.gov/science_plan/Ch6.pdf 
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Sub-systems of cryosphere have 
already different time scales 
•  Frozen water (lakes, rivers, active layer, snow) has time-

scales of hours to seasonal 
•  But freeze-up/break-up processes driven by large-scale and local 

weather conditions 
•  Snow-cover has potential decadal and longer time-scale climate-

system feedbacks due to impacts on temporal/spatial soil-moisture 
distribution 

•  Sea-ice has time scales of one to several years 
•  Glaciers, ice-sheets, ground-ice have remained frozen for 

10-10000y or longer 
•  Ice-cover exhibits much greater regional-scale inter-

annual than hemispherical variability 
•  … 
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Time of impact of cryosphere sub-
systems varies among sub-systems 
•  Snow-cover has greatest impact on the 

Earth radiative balance in April-May 
•  Snow-breezes (spring, fall) 
•  Snow-cover extent modulates the 

monsoon 
•  … 
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Cryosphere affects water balance 

•  Seasonal snowpacks affect 
• soil moisture 
• depth of the active layer 
• river discharge (e.g. 85% of annual runoff in 
Colorado River basin from snowmelt) 

•  Blue and green water recharge 
•  Collapses of the West Antarctic Ice Sheet 

(grounded on bedrock below sea level) has 
potential to raise sea level 

• Moisture supply to the atmosphere 

•  … 
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Data of state variables and fluxes are 
needed for earth system model 
evaluation/development 
•  Simulations show that one can obtained the same values 

of state variables with different fluxes 
•  Capturing the state variables are necessary conditions, 

capturing the fluxes are required conditions 
⇒ Measure both state quantities and fluxes to close energy, 

and water balances 
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Data needs to describe cryosphere sub-systems 

Parameter units needed/available 
accuracy 

temporal 
resolution 

spatial 
resolution 

vertical 
resolution 

source 

Snow-cover %, km2 10% d, m, y 10m-25km N/A ASTER, AVHRR, ETM, TMradarsat, landsat, 
MODIS, AMSR-E, SSM/I, ERS, JERS, SPOT 

Snow-depth m 10% (0.05m/0.2m) d 30m-12km 0.05m AMSR-E, SSM/I, radarsat, ERS, JERS 
Snow-water 
equivalent 

mm 10%, 2.5-25mm d 10m-12km 0.005-0.5m SAR, AMSR-E, SSM/I, radarsat 

Soil temperature K 0.2K h-d ? variable w. 
depth 

various monitoring networks 

Soil ice - - - - - indirectly via soil temperature 
Sea-ice/glacier extent % 7% d, w, m 12km N/A AMSR-E (11), AVHRR, ASTER, MODIS, TM 
Ice displacement m 1km/300m w 5km N/A MODIS, radarsat, buoys 
Ice deformation 1/s 0.5%/0.1% w 5km N/A MODIS, radarsat, buoys 
Ice thickness 
distribution 

m 0.505m y 100m-1km 1-10m SAR 

Sea-ice concentration % <10% d 20km N/A AMSR-E 
Cloud-ice - - d 1km - MODIS, aircraft 
Cloud-ice effective 
particle radius 

- 10% d 1km  MODIS, aircraft 

Ice crystal precip - - - -  ICESat, aircraft 
Ice surface 
temperature 

K 1K d 1-100km  ASTER, AVHRR, TM, MODIS, AIRS, buoys, 
stations 

Ice thickness 
distribution 

1/m 10%/50% - - - sonar,radarsat 

Freeze-up/break-up 
date 

DOY d d 1-5km N/A MODIS, AMSR-E, SSM/I, stations 

Soil freeze/thaw cycle - - h, w, full y - - ERS, JERS, radarsat, AMSR, SSM/I, stations 
Fluxes Wm-2, 

kg/m2/s  
10-20% (?) h, m, y ? N/A ARM, AmeriFlux, EuroFlux, stations (?) 

!
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Cryosphere relevant quantities have to 
be cataloged 

•  Various soil-vegetation models can 
deal with organic soil 

⇒  Results show different freezing/thawing 
behavior for organic and mineral soils  

⇒  Data base for spatial organic soil 
distribution is needed 

•  Sensitivity studies and Gaussian 
error propagation techniques show 
soil parameter uncertainty affects 
simulated permafrost temperatures, 
heat and water fluxes 

⇒  Datasets of distribution of individual soil 
parameters (pore-size distribution index, 
porosity, heat capacity, thermal diffusivity, 
etc.) would be even better 

Modified after Mölders and Walsh (2004) 

Modified after Mölders et al. (2005) 
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Vegetation cover also affects 
permafrost and the active layer 
•  Modeling experiment with same meteorological forcing, 

but different vegetation cover 
⇒ vegetation type affects active layer depth, permafrost 
⇒ assessment of permafrost changes needs detailed 

vegetation distribution data 
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Field campaigns were suitable to develop 
models for understanding sub-system 
processes 
Field campaigns 
•  provided insight in 

processes 
•  Allowed  

• Model development 
• Model evaluation 
• Model intercomparison 

for better understanding 
•  Identify gaps in 

understanding/modeling 
•  Identify further data 

needs 

From: Narapussetty and Mölders (2006) Soil layer vs. RMSE for 2 different parameterizations, 
data from ATLAS and permafrost observatory data 
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Routine monitoring data provided hints at 
possibly “missing” cryosphere processes 

•  MM5 predicted to high 
snow depth increase 

•  Incorrect sea-ice 
distribution led to too 
much evaporation from 
the Baltic Sea 

⇒  Too much snowfall in 
Finland for all model 
setups 

From: Narapussetty and Mölders (2006) 
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Routine monitoring data provided hints at 
possibly “missing” cryosphere processes 

•  MM5 predicted to high 
snow depth increase 

•  Incorrect sea-ice 
distribution led to too 
much evaporation from 
the Baltic Sea 

⇒  Too much snowfall in 
Finland for all model 
setups 

Modified after: Narapussetty and Mölders (2005) 

Plots for other simulations look similar 
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Existence of sea-ice has consequences 
for SST and exchange of heat and matter 

NOT_CLIM – CLIM mean difference 
for (left) sea-ice fraction, and (right) 
SST (K). From: Moreira 2011 

NOT_CLIM – CLIM mean 
difference for Sensible (left) 
and latent heat (right) fluxes 
(W m-2). From: Moreira 2011 
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Sea-ice distribution led to extreme polar low 
of 2008 => knowledge of sea-ice distribution 
critical to capture polar lows 

Time series of SLP (blue) and 
temperature (red) at 72N, 170W for 
NOT_CLIM (solid), CLIM (dashed) 
simulations. Dot indicates location 
relative to simulation domain. From: 
Moreira 2011 
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Climate system approach puts forward 
new challenges for data 
•  Traditional LAOF instruments, platforms, 

services emphasize microscale, mesoscale 
and synoptic scale meteorology, air 
chemistry 

•  Climate system research needs long time- 
series to assess ability to capture changes 

• Not feasible with individual field campaigns 
• Data must cover a large spatial scale, if not the earth 
• Data of more than one system may be needed 

•  First steps have been made 
 

 



UNIVERSITY OF ALASKA FAIRBANKS 
18 

Long time series and gridding allows 
understanding climatic behavior/distribution, 
identify changes 

•  In former USSR soil temperature 
measurements for more than 50 
years 

•  Gridding to 2.8ox2.8o to determine 
soil climatologies (Zhang et al. 
2005) 

From: PaiMazumder and Mölders (2009) 

From Zhang (2005, pers. com.) 
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Intelligent data processing procedures offer 
opportunity to use data for purposes other 
than they were originally taken for 
•  In former USSR soil temperature measurements for agricultural purposes 
•  >50y of time series 
•  Gridding to 2.8ox2.8o  for use in climate model evaluation (Zhang et al. 

2005) 

Modified after: PaiMazumder et al. (2008) 
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Combination of multiple datasets may lead to 
more than just looking at them independently 
or individually 
•  models may performed well offline, but may do differently inline 
•  Errors in other components may lead to errors in the quantity of 

interest (e.g. snow-depth. snow-temperature, soil-temperature, cloud-
ice fraction, precipitation) 

Modified after: PaiMazumder et al. (2007) 
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Some observed changes in a system can 
only be explained by changes occurring in 
other systems  

 Circumpolar Arctic tundra 
vegetation change is linked to 
sea-ice decline 

 

From: Bhatt et al. (2011) 
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Network design and density play a role for capturing 
regional climatologies correctly 

•  WRF-data as “grand truth” 
•  Randomly designed networks 
•  Calculate regional averages on 

2.5ox2.5o grid, region 

•  Real, biased network provides 
the greatest error 

Modified after: PaiMazumder and Mölders (2008) 
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Threefold strategy is needed 
•  Develop methods to use and extent existing data for new purposes 

•  Digitize printed data 
•  Modeling friendly data storage (i.e. fill in days, hours with missing data instead 

of just listing the days, hours with measured data) 
•  How to deal with “biased” networks (e.g. measurements only in fertile soils”? 
•  How to deal with unknowns/missing parameters/quantities needed for model 

evaluation/development? 
•  … 

•  Develop and implement intelligent observational strategies that serve 
multiple disciplines  

•  to enhance existing data 
•  to be able to answer system questions 
⇒ We have to go beyond thinking in our own discipline 

•  Measure both state quantities and fluxes to close energy 
and water balance 
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