

Oklahoma-Texas Area Office

Ownership/oversight responsibility for 11 reservoirs with a total capacity of 4.2 million acre-feet.

Total water rights from projects:

 M&I - 571,000 acre-ft/yr to about 2.7 million customers.

 Irrigation - 110,600 acre-ft/yr for about 63,000 acres.

Annual recreation use of over 4 million visitor-days each year.

Ownership/oversight responsibility for 190,000 acres of Federal land

Study Goals

- Provide clarity to the decision-making process
- Model automation to rapidly evaluate numerous potential reservoir inflow scenarios
- Develop an operations model that accurately reflects physical system and operational policy
- Utilize forecasts that 'accurately' capture uncertainty in reservoir inflows

Yellowtail Unit of Wind-Bighorn River

Snowmelt dominated basin

 Three upstream Reclamation reservoirs: Bull Lake, Boysen Reservoir, and Buffalo Bill Reservoir

 Project authorized for irrigation, power generation, flood control, fish & wildlife, and recreation

Crow Tribe Water Right
Settlement provided water
rights and "exclusive right to
develop and market power
generation"

Management Challenges

- Maximizing value to all Congressional authorized uses
- Spring inflow volume and timing forecast uncertainty

Bighorn Lake recreation

Bighorn River recreation

Mid-Term Operations

Current Practice

 Lots of information for an operator to process

- Operator subjectively quantifies forecast uncertainty
- Operator subjectively quantifies risk on a real-time basis
- Decisions are not easy
- Everyone not so happy

Mid-Term Operations

Best Practice

 Minimize data an operator is required to process

- Develop forecasts to quantify uncertainty
- Develop risk policies in advance
- Make operational decisions based on risk policy
- Allow for professional judgement after quantifying uncertainty and risk

How can a model suggest an operational decision?

- Two-stage stochastic programing with recourse
 - Make decision over a shorter first stage (e.g. releases for the next 24 hours)
 - Apply decision to longer second stage (e.g. the following 13 days)
- Choose a first stage decision based on tradeoffs between the impacts on metrics of importance in BOTH stages

Conceptual

current and projected basin info

(obs and ensemble inflow forecasts)

(RiverWare model)

operational decision

A Ensemble Inflow Forecasts

verification / validation bias correction / post-processing input into model

Physically-Based Forecasts NWS Missouri River

Basin Forecast

Center

National Center for **Atmospheric** Research

Statistically-Based Forecasts

Reclamation GP Regional Office

RiverWare Model

Bighorn Inflows

Yellowtail RiverWare model substantially complete and tested

CADSWES has developed a preliminary method for stochastic programing with recourse

B Risk Quantification

Defining risk

Defining risk tolerance

Operational Decision

 Look at compiled information, risk thresholds

- Look at tradeoffs between competing objectives
- Make operational decision

Study Design

Operational Simulations

Look at operational decisions for two timescales –

- short-term (5 to 14 days)
- mid-term (out 12 months)

Project Status

Complete and Ongoing

- RiverWare operations model is complete
- NWS and NCAR will provide ensemble forecast hindcasts this calendar year
- Reclamation will develop a methodology to post-process ensemble forecasts to include all aspects of uncertainty
- CADSWES has developed a preliminary method for stochastic programming with recourse
- Operators will determine approaches to risk this calendar year

Next Steps

Modeling scenarios in next calendar year

Other Applications

How could this work in our area?

- Water Supply Operations?
 - Balancing reservoir benefits
 - Optimizing irrigation and M&I
- Flood Operations?
 - HEFS ensembles from ARBRFC

Study Contributors

Jordan Lanini

Reclamation Great Plains Regional Office

Dan Broman and Marketa McGuire

Reclamation Technical Service Center

Edith Zagona and David Neumann

Center for Advanced Decision Support for Water and Environmental Systems

University of Colorado, Boulder

Andy Wood

National Center for Atmospheric Research

Contact Information:

Anna Hoag, P.E Oklahoma-Texas Area Office ahoag@usbr.gov, 405-470-4829