

Observation Handling with the IODA Subsystem of JEDI

Stephen Herbener

Joint Center for Satellite Data Assimilation (JCSDA)

17th JCDSA Science and Technical Workshop May 29-31, 2019

What is IODA?

- IODA is the subsystem in JEDI that provides access to observation data
- Interface for Observation Data Access
- Three levels
 - Archive: long term storage, historic database
 - File: on disk, data for one DA Cycle
 - Memory
- Two environments
 - Plotting, analyzing, verifying on workstation or laptop
 - DA and other HPC applications (MPI, threads, GPUs, ...)

JEDI Overview

- Enables high leverage
- For example, add your model

SATELLITE DAY

- Then you have access to:
 - Obs data
 - Forward operators
 - DA flows
 - Etc.

IODA Long Term Vision

- Look and feel of a database
 - Select and filter data on various criteria
 - Select observations within a DA timing window
 - Filter on QC marks, horizontal locations, station id's, etc.
- Converge on a common file format for holding observation data
 - A common format would greatly facilitate the sharing of data and the exchange science results
- Likely that we will adopt an existing database solution
 - We will soon be evaluating ECMWF's ODB solution once the ODC API becomes available

IODA Requirements

- IODA Workshop
 - February 2019 at NRL in Monterey, CA
 - Requirements gathering effort
 - First round of gathering (ala agile methodology)
- Categories of requirements include, but not limited to:
 - Access to Data and Meta-data
 - Data and meta-data are both important
 - Efficient query style access
 - Flexible
 - Wide variety of obs types
 - Reliable
 - Operational mode cannot break down
 - Portable
 - Across hardware platforms, programming languages and compilers
 - Security
 - Protected data and results

Revisit IODA Levels

- Three levels
 - Archive: long term storage, historic database
 - File: on disk, data for one DA Cycle
 - Memory

IODA Levels: Capacity-Speed Tradeoff

- Archive
 - All obs types
 - All dates (decades)
- File
 - Specific obs types
 - DA cycle begin end
- Memory
 - Specific obs types
 - Forecast begin end

DA Flow

- Retrieve all sonde, AMSU-A and sfc winds within the one month period
- 2. Loop over each 6-hr
 forecast window retrieving
 appropriate sonde, AMSU-A
 and sfc winds as needed
- As DA flow progresses, store diagnostics into output files

IODA Status

- IODA started as a simple prototype and is evolving toward the long term vision
- We are currently using pieces of existing systems to mimic the database style access to the three IODA levels
 - Archive
 - Data tanks from various data centers
 - Different file types (BUFR, netcdf, specialized binary)
 - Different methods of organizing data within the file
 QC code semantics, internal table structure and layout, etc.

– File

- Netcdf
- Unified organization within the file
- Memory
 - C++ Standard Data Structures

IODA Today

SATELLITE DATA

IODA Next steps

- Complete the design of long term IODA subsystem
 - Database design
 - Select a database solution (ODC, other?)
 - Define how to organize data within the database file and memory structures
 - This task will determine the common file format for IODA
- Create the IODA Archive Level
 - Data storage strategy (cloud)
 - Interface for archiving and retrieving data
 - Tool to convert raw observation data to the IODA common file format