JEDI Portability Across Platforms

Containers, Cloud Computing, and HPC

Mark Miesch (JCSDA)

NOAA

Outline

I) JEDI Portability Overview

- Unified vision for software development and distribution
- **II)** Containers
 - + What are they? How do they work?
 - + Docker, Charliecloud, and Singularity

III) HPC and Cloud Computing

- Environment modules
- Containers in HPC?
- **IV) Summary and Outlook**

JEDI Software Dependencies

- Essential
 - + Compilers, MPI
 - CMake
 - + SZIP, ZLIB
 - + LAPACK / MKL, Eigen 3
 - NetCDF4, HDF5
 - + udunits
 - + Boost (headers only)
 - + ecbuild, eckit, fckit
- Useful
 - + ODB-API, eccodes
 - + PNETCDF
 - + Parallel IO
 - + nccmp, NCO
 - Python tools (py-ncepbufr, netcdf4, matplotlib...)
 - + NCEP libs
 - Debuggers & Profilers (ddt/TotalView, kdbg, valgrind, TAU...)

Common versions among users and developers minimize stack-related debugging

The JEDI Portability Vision

I want to run JEDI on...

- My Laptop/Workstation/PC
 - We provide software containers
 - Mac & Windows system need to first establish a linux environment (e.g. a Vagrant/VirtualBox virtual machine)

Development

In the Cloud

- + We provide containers, machine images (AMIs)
- + We provide access via a Web-based Front End (in development)!

On an HPC System

Applications

Development

Applications

- We provide environment modules on selected systems (Theia, Discover, Cheyenne...)
- + We provide high-performance containers (in development)
- We provide access to selected HPC resources and JEDI applications via the web front end (in development)

Tagged jedi-stack releases can be used to build tagged containers, AMIs, and HPC environment modules, ensuring common software environments across platforms

Part II: Containers

Software container (working definition) A packaged user environment that can be "upacked" and used across different systems, from laptops to cloud to HPC

Container Benefits

- + BYOE: Bring your own Environment
- Portability
- Reproducibility
 - Version control (git)
- Workflow/Composability
 - Develop on laptops, run on cloud/HPC

Container Providers

- + Docker
- Charliecloud
- Singularity

Containers work with the host system Including access to your home directory

Julio Suarez **ORM** NEOVERSE

Example: Charliecloud

Containers exploit (linux 3.8)

User Namespaces (..along with other linux features such as cgroups) to define isolated user environments

Example: CharlieCloud

A user "enters the container" with a simple command

ubuntu@ip-172-31-22-87:~/ch-jedi\$ ch-run ch-jedi-latest -- bash ubuntu@ip-172-31-22-87:/\$ which ecbuild /usr/local/bin/ecbuild ubuntu@ip-172-31-22-87:/\$ ls /usr/local/include/netcdf.h /usr/local/include/netcdf.h ubuntu@ip-172-31-22-87:/\$

A user obtains the container by unpacking an image file

Container Technologies

Docker

- Main Advantages: industry standard, widely supported, runs on native Mac/Windows OS
- Main Disadvantange: Security (root privileges)

Charliecloud

- Main Advantages: Simplicity, no need for root privileges
- Main Disadvantages: Fewer features than Singularity, Relies on Docker (to build, not to run)

Singularity

- Main Advantages: Reproducibility, HPC support
- + Main Disadvantage: Not available on all HPC systems

Container Technologies

Kurtzer, Sochat & Bauer (2017)

Table 1. Container comparison.

	Singularity	Shifter	Charlie Cloud	Docker
Privilege model	SUID/UserNS	SUID	UserNS	Root Daemon
Supports current production Linux distros	Yes	Yes	No	No
Internal image build/bootstrap	Yes	No*	No*	No***
No privileged or trusted daemons	Yes	Yes	Yes	No
No additional network configurations	Yes	Yes	Yes	No
No additional hardware	Yes	Maybe	Yes	Maybe
Access to host filesystem	Yes	Yes	Yes	Yes**
Native support for GPU	Yes	No	No	No
Native support for InfiniBand	Yes	Yes	Yes	Yes
Native support for MPI	Yes	Yes	Yes	Yes
Works with all schedulers	Yes	No	Yes	No
Designed for general scientific use cases	Yes	Yes	No	No
Contained environment has correct perms	Yes	Yes	No	Yes
Containers are portable, unmodified by use	Yes	No	No	No
Trivial HPC install (one package, zero conf)	Yes	No	Yes	Yes
Admins can control and limit capabilities	Yes	Yes	No	No

SATELLITE DATA

This is why we will continue to support all three (Docker, Singularity, Charliecloud)

Container Types

Development Containers

- +Include dependencies as compiled binaries
- Include compilers
- JEDI code pulled from GitHub repos and built in container

Application Containers

Include dependencies as compiled binaries
Runtime libraries only (no compilers)
Include compiled (binary) releases of JEDI code
Optimized for high performance

Each Distributed as Singularity and Charliecloud image files Each tagged with release numbers to ensure consistent user environments

Part III: HPC and Cloud Computing

Containers in HPC?

An attractive option, particularly for new JEDI users
 Need to access native compilers, MPI for peak performance

Containers in the Cloud?

 Can be an attractive option but often unnecessary with the availability of machine images (e.g. AMIs)

Environment Modules

Greater flexibility for testing and optimization

- JEDI Test Node on AWS
- Maximum Performance (built from native compiler/mpi modules)
- Maintained on selected HPC systems (Theia, Discover, Cheyenne...)

Environment modules

lubuntu@ip-172-31-20-178:/opt/modules\$ tree -L 2

SATELLITE DA

Containers can achieve nearnative performance (negligible overhead) but only if you tap into the native MPI libraries

HPC containers promising, but currently not "plug and play"

Cloud Computing at JCSDA (currently)

JEDI Testing/Optimization

- Multiple compiler/mpi combinations
- Scalable configurations for Parallel applications

JEDI Training

Compute nodes for JEDI Academy

NWP with FV3-GFS

- 10-day forecast at operational resolution on AWS
 - Pre-oerational configuration
 - c5.18xlarge nodes (36 cores, 144 GiB, 25 Gbps)
 - 10-day forecast in 74 min (7.4 min/day) on 48 nodes (1536 cores)
 - 125 min (12.5 min/day) on 27 nodes (768 cores)

And more

- Machine learning
- + FSOI
- Data Repository

New technology should improve performance further! FSx, EFA

Summary and Outlook

I want to run JEDI on...

- My Laptop/Workstation/PC
 - Singularity/Charliecloud/Vagrant
- In the Cloud
 - + Containers, AMIs (+?)
 - Web-based Front End in development

On an HPC System

- Environment modules on selected systems (Theia, Discover, Cheyenne...)
- High-performance containers
- Web-based Front End in development

Unified, module-based build system with tagged releases

Docker

jedi-stack

Travis-CI

Charliecloud

Singularity

Cloud

HPC

Supplementary Slides...

Performance Estimates

Preliminary comparison (in core hours) of a moderate fv3jedi application run on 216 cores on AWS and Discover

	AWS (6 c5n.18xlarge nodes)	Discover
bumpparameters_loc_geos	1.7	26
bumpparameters_cor_geos	11	39
hyb-3dvar_geos	8.8	7.7

Cheyenne	Native	Charliecloud
FV3-jedi unit tests	808.19 s	808.52 s