Satellite Radiance Assimilation Enhancements for the Upcoming NCEP Operational Rapid Refresh Upgrade

Haidao Lin
Steve Weygandt
Ming Hu
John Brown
Amanda Back
Curtis Alexander
Stan Benjamin

Assimilation Development Branch, Global Systems Division
NOAA Earth System Research Lab, Boulder, CO
Cooperative Institute for Research in the Atmosphere
Colorado State University

http://rapidrefresh.noaa.gov
NOAA/NCEP’s hourly updated models: RAPv5 / HRRRv4 operational upgrade

RAPv4 / HRRRv3
NCEP implementation: July 2018

- Key features for short-range “situational awareness”
- RAP/HRRR guidance for aviation, severe weather, energy applications

RAPv5 / HRRRv4
Planned implementation: June 2020

- ABI from GOES-16
- CrIS-FSR, ATMS from N20 with DB/RARS feeds
- VIIRS fire radiative power for “HRRR-smoke”
Use of satellite data in RAP / HRRR

Geostationary
- GOES cloud-top pressure
- GOES-15 sounder data
- AMVs
- SEVIRI
- GOES-16 ABI data WV channels
- GLM Lightning data (via LH)
- Cloud-top cooling rate data

Polar Orbiter
- AMSU (RARS)
- MHS (RARS)
- IASI (DB, RARS)
- AIRS
- ATMS (DB, RARS, NPP, N20)
- CrIS (DB, RARS, NPP, NPP/N20 FSR)
- SSMIS
- VIIRS/MODIS fire radiative power
- VIIRS greenness vegetation fraction

DB = Direct Broadcast
RARS = Regional ATOVS Retransmission Services

RAPv4 (2018)
RAPv5 (2020)
RRFS (FV3, ~2022)

RAP data cutoff ~30 min.
Very little polar orbiter radiance data available in time without DB/RARS
Radiance Channels in RAPv3/earlier, RAPv4, RAPv5

AMSU-A
- NOAA_n15: channels 1-5, 7-10, 15;
- NOAA_n18: channels 1-10, 15; *(removed channels 5, 8)*
- NOAA_n19: channels 1-9, 10, 15; *(removed channel 7)*
- METOP-a: channels 1-6, 9, 10, 15;
- METOP-b: channels 1-10, 15; *(removed channels 1-7, 15)*
- AQUA: channels 6, 8-10;

MHS
- NOAA_n18, METOP-A, and METOP-B: 1-5
- NOAA-19: 1-5 *(removed channel 3)*

GOES
- GOES-15 (sndrD1, sndrD2, sndrD3, sndrD4): channels 3-8, 10-15
- **SEVIRI**: channels 5, 6 from M10
- **ATMS**: channels 1-11, 16-22 from S-NPP
- **CrIS-NSR**: 66 channels from S-NPP *(replaced by CrIS-FSR)*
- **SSMIS**: channels 1-2, 5-7 from DMSP-17
- **AIRS**: 66 channels from AQUA
- **IASI**: 98 channels *(longwave)* from METOP-A and METOP-B
- **CrIS-FSR**: 72 channels from S-NPP and NOAA-20
- **ATMS**: channels 1-11, 16-22 from NOAA-20
- **ABI**: three water vapor channels *(channels 8-10)* from GOES-16
% improvement: ALL radiance data (through RAPv4)

Temperature

Relative Humidity

Wind

4-week Retro averaged

Normalized Errors

E_N = \frac{(\text{EXPT} - \text{CNTL})}{\text{CNTL}}

Radiosonde verification

100-1000 hPa RMS mean
Radiance assimilation updates for RAPv5

- Includes new sensors/data
 - ABI infrared data from GOES-16 (3 channels)
 - CrIS-FSR data from S-NPP (72 channels) (and removes CrIS-NSR from S-NPP)
 - CrIS-FSR data from NOAA-20 (72 channels)
 - ATMS data from NOAA-20 (18 channels)
- Uses direct broadcast (DB) and RARS data from NOAA-20

Evaluate FURTHER improvement for RAPv5 beyond the improvement seen in RAPv4
Retrospective Experiments

• Control run (CNTL) – (All data in RAPv4)
 • 1-h cycling, 7-day retro run (September 09 –15 2018) using RAPv4
 • All data used in operational RAPv4 (conventional + satellite radiance data)

• Experiment runs (NCEP real-time hourly data)
 • CNTL + \textbf{N20 CrIS-FSR} (72 channels)
 • CNTL + \textbf{N20 ATMS} (18 channels)
 • CNTL + \textbf{GOES-16 ABI} (3 channels) (NCEP baseline cloud mask data)
 • CNTL + \textbf{All above new data sets}
12-h fcst. Normalized Errors from New Data Sets

Radiosonde verification
100-1000 hPa RMS mean one-week hourly RAP retro run averaged (Sep09-Sep15 2018)

Normalized Errors

\[E_N = \frac{(\text{CNTL} - \text{EXPT})}{\text{CNTL}} \]

Control run has all operational data in RAPv4.
1-12 fcst. relative humidity verification

+1.5%

Relative Humidity

Radiosonde verification 7-day retro runs (Sep09-Sep15 2018) averaged
N20 CrIS-FSR channel selection for RAP

Simulated BT for CrIS-FSR 2211 channels

CrIS 2211 channels
NESDIS 431-channel set
GDAS 100-channel set
RAP selected 72-channel set (64 longwave+8 WV)
Some details on ABI channels

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Central Wavelength</th>
<th>Contribution Primary usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3.90 µm</td>
<td>windows (shortwave band, fire detection)</td>
</tr>
<tr>
<td>8</td>
<td>6.19 µm</td>
<td>Upper troposphere water (340 mb)</td>
</tr>
<tr>
<td>9</td>
<td>6.95 µm</td>
<td>Mid-level water (440 mb)</td>
</tr>
<tr>
<td>10</td>
<td>7.34 µm</td>
<td>Low-level water (615 mb)</td>
</tr>
<tr>
<td>11</td>
<td>8.40 µm</td>
<td>cloud-top phase, SO₂</td>
</tr>
<tr>
<td>12</td>
<td>9.61 µm</td>
<td>O₃</td>
</tr>
<tr>
<td>13</td>
<td>10.35 µm</td>
<td>window (clean IR)</td>
</tr>
<tr>
<td>14</td>
<td>11.20 µm</td>
<td>window (low stratus detection with 3.9 µm channel)</td>
</tr>
<tr>
<td>15</td>
<td>12.30 µm</td>
<td>window (dirty IR)</td>
</tr>
<tr>
<td>16</td>
<td>13.30 µm</td>
<td>CO₂ (low level temperature)</td>
</tr>
</tbody>
</table>
ABI Radiance BUFR files

- ABI Clear Sky Radiance (CSR) BUFR files from NESDIS
 - Baseline cloud mask
 - NOAA enterprise cloud mask
 - 15-min Full Disk (FD) data

- NCEP ABI hourly BUFR files for RAP
 - Baseline and enterprise cloud mask data

- CSR BUFR files
 - 15 X 15 box data (30 km resolution with 362x362 full disk data; original ABI infrared data with 2 km resolution 5425x5425)
 - BT standard deviation within a 15x15 box, could provide additional information for cloud detection
 - Satellite zenith angle less than 60 degree
One-month ABI O-B evaluation

One-month (May02-May31) RAP 1h forecast (background) are used in GSI/CRTM to calculate the O-B with co-located ABI radiance data (baseline vs. enterprise).

Channel 10 (615 hPa PWF) has the smallest bias (negative), drier background around 615 hPa; more moist background above 450 hPa.

Time series mean O-B for enterprise cloud mask data.
Ongoing different data sets, QC, and error tuning work

- Baseline vs. enterprise cloud mask radiance data
 - Enterprise seems better from one-month O-B evaluation

- QC work
 - Gross check (2K vs. 4K)
 - STD of BT in the 15x15 box as additional cloud check
 - Removed BT STD > 0.4 K
 - 0.4 K could be larger?
 - 0.5 vs. 1.0
 - Amount segment cloud free
 - Currently < 70%, rejected
 - Could be larger
 - 70% vs. 100 %?

- Error tuning
 - Initially three water vapor channels assigned 2.2 K error
 - Changed to the calculated O-B standard deviation
 - Inflated errors could be safer
4-month ABI O-B evaluation (STD 0.5 vs. 1.0)

4-month RAP hourly O-B: May 2018, July 2018, October 2018, and January 2019

100% clear baseline data
ABI experiments with QC/error tuning

2k gross check
4k gross check

Relative Humidity

Baseline
Enterprise

6h forecast
Radiosonde verification

Initial errors (2.2K)
New calculated errors (smaller)

STD < 1.0
STD < 0.5

7-day retro run (May01-May07 2018)
ABI assimilation vs. CNTL

Relative Humidity

6h

12h

New errors
STD < 0.4
2k gross check

Enterprise cloud mask data
7-day retro run (May01-Mah07 2018)
• Use RAP WRF NETCDF forecast files and matched CrIS radiance BUFR files as input to GSI

• Use GSI/CRTM to calculate the space and time (< 30 min.) co-located O-Fs with bias correction

• Compare the averaged O-F values (BC applied) for different CrIS channels for runs with and without DB

Compare impact from direct readout data with radiosonde vs. radiance verification
Sample radiance ob counts w/ and w/o DB/RARS data

Sample from 22 Aug. 2017

ALL satellite obs

NO DB / RARS satellite obs

Sample from 22 Aug. 2017
% improvement from direct readout

Temperature

Relative Humidity

Wind

Impact from GFS partial cycle

Init Hour 11,23z 9,21z 6,18z 3,15z 0,12z 18,6z

Fcst length 1 3 6 9 12 18

Hrs since GFS 2 0 9 6 3 9

Normalized Errors

\[E_N = \frac{(EXPT - CNTL)}{CNTL} \]
Normalized fcst. improvement from DB data verified against CrIS Obs.

Normalized Errors

\[E_N = \frac{(\text{EXPT} - \text{CNTL})}{\text{CNTL}} \]

% impact from denying DB and RARS data

Chan. 83
PWF 218 hPa

Chan. 165
PWF 814 hPa
Normalized 6-h fcst. improvement from DB data verified against CrIS BT obs.

\[E_N = \frac{(EXPT - CNTL)}{CNTL} \]

% impact verified against each used CrIS channel from denying DB and RARS data

10%
Single case HRRR/AK GSI runs (06Z 05/01/2018) with and without radiance data

Control run: all available conventional data in operation HRRR/AK

Radiance run: control run adds all radiance data available for RAPv4, only amsua, mhs and IASI data are available for this cycle

Analysis difference: Analysis from radiance run minus analysis from the control run (to see impact from radiance data)
Forecast verification against CrIS Obs.

One-week 3h cycled HRRR/AK retro runs (May01-May07 2018) averaged
Summary

- **RAPv5** upgrade radiance package (GOES-16 ABI, N20 CrIS-FSR/ATMS) with overall up to 1.5% normalized improvement (against raob.) for RH

- GOES-16 ABI RAP retro results (3 water vapor channels): neutral impact → slight positive impact with additional error tuning and QC

- ABI one-month RAP O-B comparison: smaller errors for enterprise cloud mask than baseline cloud mask

- N20 CrIS-FSR/ATMS RAP retro experiments: CrIS-FSR small positive impact for RH, ATMS small positive impact for RH and wind

- Greater positive impact from DB data for verification against CrIS BT than for radiosonde verification
Finalizing radiance upgrade package for RAPv5, completion of real-time testing at GSD and code transfer to EMC (initial code hand-off June 2019), RAPv5/HRRR4 NCEP planned operational implementation target June 2020

Continue GOES-16 ABI radiance assimilation work
- More QC work for cloud detection
- Add more ABI infrared channels
- ABI data assimilation in HRRR (sub-hourly ABI assimilation in HRRR?)

ATMS/CrIS-FSR DB data from NOAA-20

HRRR/AK – continue radiance assimilation testing

Begin FSOI obs. impact assessments

Begin all-sky radiance assimilation and inter channel correlation work
Acknowledgment

• Thanks Qiang Zhao, Peter Keehn, Walter Wolf, and Thomas King from NESDIS for providing the ABI radiance BUFR files
• Thanks Yangrong Ling, Shelley Melchior, and Sudhir Nadiga at NCEP for processing and providing real-time experimental hourly ABI/CrIS-FSR/ATMS data for RAP
• Thanks NCEP decoder group (Jeff Ator etc.) for working on dumping CrIS-FSR DB data for RAP;
• Thanks Jim Jung for the information about DB data and discussion on the CrIS-FSR and ABI data
• Thanks Haixia Liu for discussion on ABI data
Thank you!
4-month ABI O-B evaluation (land vs. water)

4-month RAP hourly O-B: May 2018, July 2018, October 2018, and January 2019

100% clear baseline data

RAP 1h forecast (background) are used in GSI/CRTM to calculate the O-B with co-located ABI radiance data (water surface vs. land surface)
4-month ABI O-B evaluation (100% clear vs. 90% vs. 70%)

- **STD**
- **Mean bias**

BT mean Difference/STD (K)

ABI infrared channels

- **more than 70% clear**
- **more than 90% clear**
- **100% clear**

4-month RAP hourly O-B: May 2018, July 2018, October 2018, and January 2019

Baseline cloud mask data
Radiance Channel List for HRRR
(20 hPa model top)

- **AMSU-A**
 - NOAA_n15: channels 1-5, 7-9, 15;
 - NOAA_n18: channels 1-4, 6-7, 15;
 - NOAA_n19: channels 1-6, 9, 15;
 - METOP-a: channels 1-6, 9, 15;
 - METOP-b: channels 8-9;
 - AQUA: channels 6, 8-9;

- **MHS**
 - NOAA_n18, METOP-A, and METOP-B: 1-5
 - NOAA-19: 1, 2, 4, 5

- **GOES**
 - GOES-15 (sndrD1, sndrD2, sndrD3, sndrD4): channels 3-8, 10-15

- **ATMS**: channels 1-10, 16-22 from S-NPP

- **CrIS**: 58 channels (list omitted) from S-NPP (66 in RAP)

- **SSMIS**: channels 1-2, 5-6 from DMSP-17

- **AIRS**: 59 channels from AQUA (66 in RAP)

- **IASI**: 74 channels (longwave) from METOP-A and METOP-B) (98 in RAP)
Initial ABI retrospective experiments

- **Control run (CNTL) – (All data in RAPv4)**
 - 1-h cycling run, one-week (May 01 – 07 2018) using RAPv4 version (newer GSI version and CRTMv2.3.0)
 - All data used in operational RAPv4 (conventional + radiances)

- **Clear-sky ABI radiance (baseline) experiment**
 - Added three ABI radiance water vapor channels
 - Thinning 60 km
 - Amount segment cloud free less than 70% are rejected
 - Satellite zenith angle larger than 60 degree are rejected
 - GSI gross check (O-B with BC less than 2 K, rejected)
 - Assigned error 2.2 K for all water vapor channels
 - GSI variational bias correction scheme is applied with hourly cycling
Time series O-B with and without BC

Channel 8

Channel 9

- RMS errors with BC
- RMS errors without BC
* Mean bias with BC
* Mean bias without BC

Channel 10

01--07 May 2018
Time series O-B and O-A with BC

Channel 8

Channel 9

* O-B mean diff. with BC
* O-A mean diff. with BC
○ O-B RMS errors with BC
○ O-A RMS errors with BC

Channel 10

01--07 May 2018
Mean O-B for 9 infrared channels

Mean O-B averaged from 7-day RAP ABI retrospective experiment