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Outline — Localization modeling with a neural network

1. Background and approach

IRy LN



Localization for atmos-ocean strongly coupled DA

Homework from Travis Sluka (2018)

<- worse better ->

» Using vertical and variable localization
as a form of correlation cutoff method
is vital when using a limited ensemble
size. These cross-domain state
variables with small correlations need
to be removed in the data assimilation
step in order to avoid the detrimental
impact of spurious correlations in the

Figure 3.13: STRONG - WEAK change in observation minus forecast (O-F) ensemble.

RMSD for ocean temperature. Averaged over the tropics (TP) and Northern Hemi-

sphere (NH) at various depths (left) and shown spatially (right). For the spatial
plot blue is an RMSD improvement, red is a degradation.
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Localization not based on distance

e Variable localization (Kang et al., 2011)

» By not assimilating CO, concentration observation to humidity,
for example, the analysis accuracy improves
(LETKF experiments with dynamics-carbon coupled model)

* Then how can we optimize localization for coupled Earth system models
with growing complexity?

Atmosphere Ocean
» We may use physical intuitions as Kang et al. T T
» We don’t want to try switching on/off Q 5 SSH
assimilation between every pair of variables Py U, V27 S

Precip. U,V
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What is a localization function (obs space)?

Attributes of analysis variable x;
» Latitude/longitude/level

> Analysis variable type Localization weight

[p]ij (0 < [p]ij <1)

> Time (e.g., seasonal, diurnal)

Attributes of observable y, Some multivariate function
» Latitude/longitude/level/wavelength

>

Y

> Observation type y



Mean squared error correlation as a “distance”

Reduction of analysis error variance by single-observation assimilation

> The relative accuracy of the observation to the background (~ DFS in the observation space)

» The square of background error correlation between observed and analyzed variables

2 2 2 )
Opi — Oy [(HB)ll] Oy ,
—_— = — s i’(S
Oﬁi (HBHT +R)B,l O'J%b + 0‘30 corr®(8xp;, 6yp)

We should only assimilate observations whose background error is well-correlated with
the analysis variable’s background error (correlation-cutoff method)

> Improves EnKF with a toy atmosphere-ocean coupled model (Yoshida and Kalnay, 2018 MWR)
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How to construct a localization function?

Attributes of analysis variable x;
» Latitude/longitude/level

> Analysis variable type Localization weight

> Time (e.g., seasonal, diurnal) > >
L : [p]ij (0 < [p]ij <1)
Attributes of observable y, Some multivariate function
» Latitude/longitude/level/wavelength
> Observation type y
1:? v‘}}% .
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How to construct a localization function?

Attributes of analysis variable x;

» Latitude/longitude/level Localization function in observation space g o f

> Analysis variable type . L. .

> Time (e.g., seasonal, diurnal) > Expected strength > Localization Welght

Nonlinear of background Increasing [p]ij (0 < [p]ij <1)

Attributes of observable y; regression f error correlation function g

» Latitude/longitude/level/wavelength between (x;, yj)

> Observation type / This is univariate

and far easier

This can be done with a neural network
(or other nonlinear regression)
and data from ensemble DA
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Outline — Localization modeling with a neural network

2. Experiments with toy “correlation models”
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Toy correlation models

(a) Isotropic z = exp(—r?) (b) Cos z = cos(3x)exp(—r?)
1_ 1_ - Y/ [ L) .
b . Multivariate error correlations
1 | o 1.0
» 0 ol BY | under geostrophy
~1 Y b . v
0.5 '
—2 -1 0 1 2 -2 -1 0 1 2 s
X X 10.0 o

(c) Sin z=1.5sin(2x)exp(—r?)  (d) Cross z = 6sin(x)sin(y)exp(—r?)
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s Schematic from Kalnay (2003). Contours and shadings are redundant




Neural network + noisy training data

For each correlation model, Truth X,y r r,0 Of'oizse' sin6
we prepare 1000 training data: g . _
o
1. Randomly sample |x], |y| <2 5
2. Calculate value at (x, y) and
add Gaussian error with STDV = 0.2
§
Inputs are either Output
- (x, y) “correlation”
- (r) _
-(r, 8) &
- (r, cosB, sinB)
where
— 244/2
g'_‘lx i N 10 hidden 0
= arctanty XU units (tanh) 8

s, q = W, tanh[W;p + by] + b,
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Outline — Localization modeling with a neural network

3. Background error correlations in the atmosphere-ocean systems
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Surface ensemble correlations (FOAM, 1.4-2.8 deg ocean)

surface correlation between Tsurf and SST

Surface air T and SST

> Error correlation of 0.4 means
strongly coupled DA can
reduce up to 16% of variance

Two strongest (pointwise)
mean B correlations seen in

V-wind and U-current FOAM-LETKF

> Can be explained by the
linearized Ekman layer
dynamics, where subsurface
water transport is to the right
of wind direction in NH
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ey FOAM stands for Fast Ocean Atmosphere Model (Jacob 1997)
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More examples of FOAM ensemble correlations

0 (I)Ens B corr, Atm T (obs) vs Ocn T at 120W

1.0
< 0.2 1 0.8
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5,061 0.4 An air-T observation can
0.8+ . F0.2 .
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a 2" - —0.4
2 550 and ocean
®1000° B oy
3000 —0.8
5000 -1.0

—90 -60 -30 O 30 60 90

1.0
'0.8
°° Asurface U-current
0.2 observation can constrain
- ¢ U-current and V-wind fields B correlation to an observation
& s, =0.4 background: proxy to single
7 0 i _0'6 . . . . .
. I T 0.8 observation assimilation increment
3000 1 ; . -
5000 L -Lo (normalized by B variance)
-90 -60 =30 0 30 60 90
y d“"s’%% Latitude
1 5 e —
% \vl)Q

TRY LA

14



Error correlation reproduced by neural networks

0Ens B corr, Atm V (obs) vs Ocn U at 80E
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CFSv2-LETKF (0.25-0.5 deg ocean; 40 mem; mean of June 2006)

Ens corr atm_t - ocn_t

=0.26

Ens corr atm_v - ocn_u

Mean = -0.02, RMS = 0.09

Strong T-T correlation at sea ice (FOAM
lacks) boundaries and equatorial upwelling

The small wind-current error correlations in
CFS may be associated to more internally
chaotic ocean current in CFS

> i.e., less dependent to atmosphere

> Estimation by a single column model without
horizontal dynamics (Smith et al., 2017) had the
similar conclusion with FOAM

Every model is a limited representation of
the truth or the error structure
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Outline — Localization modeling with a neural network

4. Experiment as a localization function

Attributes of analysis variable x;
, Latitude/longitude/level Localization function in observation space g o f
> Analysis variable type ... .
» Time (e.g., seasonal, diurnal) > Expected strength > Localization Welght
Nonlinear of background Increasing [pl; 0 <[p]l; = 1)
Attributes of observable y; regression f error correlation function g
» Latitude/longitude/level/wavelength between (x;, yj)
> Observation type J
* 3 o
58 8
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Preliminary 64-member single window OSSE

* For neural net-based experiment (“neural”), Examples of
piecewise quadratic function with cutoff m_non'decreasmg function g
squared correlation of 0.2 is used g

> Neural experiment is not tuned at all. %
Results are just for proof-of-concept %
* Control SCDA experiment (“control”) uses 23"
» 1000 km horizontal localization for atmosphere e
» 400 km horizontal localization for ocean Neural net-based squared correlation
» 3 levels vertical localization for atmosphere x-x, | yoye |
. o {O.S(LXA-{-L)(O)] i {O.S(LyA-i—LyO)] T
» 5 levels vertical localization for ocean 1= 2 i
» Frolov et al. (2016) cross-localization +<fj‘f—00> ’ {O-SUEA_EL,O)}
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First window analysis: ocean T at equator

(Common) background error
T_equator background error [K] (RMS:0.36)
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Analysis error of neural
T_equator analysis error [K] (RMS:0.19)

Analysis error of control
T_equator analysis error [K] (RMS:0.27)
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Neural experiment has smaller

analysis error throughout the
depth and also have smoother

error field
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First window analysis: atmosphere surface U

Analysis error of control Analysis error of neural i
U surf analysis error [m/s] (RMS:3) * Neural eXperlment haS Iarger

% ' analysis error over ocean (where
wind is not directly observed)

U surf analysis error [m/s] (RMS:2.2)

Cod

> It seems discounting the U
‘ = - (analyzed) - T (observed)
- . correlation too much

-10.0 -7.5 =5.0 —=2.5 0.0 2.5 5.0 7.5 10.0

U surf ensemble spread [m/s]

o

* It has good error-spread
relationship for both observed
and unobserved regions

> What if cycled?
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Computation COST (compared to an ordinary localization function)

 Computation time taken for three windows of analyses (including fcst)

> Both evaluates up to 3000 km distance and =16 vertical levels

» SCDA with ordinary localization function (Frolov et al. 2016)
* 5 mins 48 secs
> SCDA with neural net-based weighting

* 6 mins 8 secs (+5.7%)

* The neural net evaluation is roughly less than 10% of total LETKF computation
e Direct increase of computation time is acceptable

» Indirect increase is expected due to increased number of observations whose
localization weight is actually evaluated (common problem for any advanced
localization method; alleviated combined with physical cut-off distance)
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Summary — Localization modeling with a neural network

* Variable and spatial localization is key for strongly coupled DA

* Mean squared ensemble correlation can be used as a “distance”
> An objective criterion for spatial/variable localization (correlation-cutoff method)
* Neural networks can be used for localization modeling

» Mathematically qualified as a localization function for serial EnSRF and LETKF
> Acceptable training and evaluation costs

> We're working on cycle DA experiments

* Training data is available from ensemble DA

» However, error correlation structure highly depends on processes resolved by
the coupled models
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Derivation

We start our derivation from the state-update equa-
tions of the Kalman filter (Kalman 1960). Assuming
that the background error covariance B and observation
error covariance R are correctly specified, and that the
observation errors are not correlated with the back-
ground errors, the analysis error covariance A is given by

A= (- KH)B, (1)
K=BH"(HBH" +R)", (2)

where K is the Kalman gain, | is the identity matrix,
and H is a linearized observation operator (e.g.,
Gelb et al. 1974).

o
“

36

LSS WL
TRY LA

Consider the analysis error variance of the ith model
variable,

n o p

A, =B, ~ z-l EKHHII\-BIU‘ 3)

where n is the size of the state vector and p is the number
of observations. The fractional decrease of the uncer-
tainty for the ith model variable is given by

n

P
K H,B,.
B,‘,‘_Ai,'_l\—llgi [/ Vel ¥

B. B. ' (4)

n n

Assuming that there is only one observation (p = 1), the
observation error variance can be expressed by a scalar as
R = o . With this assumption, we can reduce Eq. (4) to

B; — A, — [(HB)lilz
B, (HBH' + R)B,’

"

()

where we used the Kalman gain [Eq. (2)] and the single
observation assumption repeatedly (note that HB and
HBH' are a 1 X n matrix and a scalar, respectively). We
then rewrite the covariance between the background errors
of the observable (8y, ) and the ith model variable (8x;,) as a
product of their correlation and standard deviations (o,
and o3, = /B;; for the observable and the ith model
variable, respectively) as (HB),; = o0, corr(xp;, dys).

We finally obtain

-k o

i i y 2

bi > ai - b . Corr“(5.\‘,,,..5y,,). (6)
(s (r;b + a';,”

where o, = /Aj;; is the standard deviation of the anal-
ysis error of the ith model variable [a similar derivation
for a two-variable example is provided in Hamill et al.
(2001)]. It is informative to compare this equation with
the analysis uncertainty reduction in the univariate
analysis, in which a single state variable is directly ob-
served by a single observation,
2

N
Op — Oa _

+ |3,

=, (7)

2 2
Ty Ty ;

where o7, o2, and o are the error variances for the back-
ground, analysis, and observation, respectively. Equation
(6) is similar to Eq. (7), except that the right-hand side is
multiplied by the square of the correlation between the
background errors of the analyzed and observed variables.
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Reasons for choosing neural networks

Method Advantages Disadvantages

Simple to implement

Linear regression S . Linear
Training is analytical
Nonlinear Discontinuous
Lookup table Simple to implement  Assumptions for boundaries

Training is analytical Curse of dimensionality

Linear combination

of nonlinear Nonlinear Assumptions for basis functions
basis functions Training is analytical Curse of dimensionality

(e.g., polynomial fit)

Nonlinear

Fewer assumptions
Relatively tolerant to
input dimensionality

Neural network Training requires iteration

x“ﬁksl 7~ b
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Distance-only localization

Attributes of analysis variable x;
» Latitude/longitude/level
Physical distance > Localization weight
between Xx;, y; Some decreasing function lply (0= [pl; = 1)
(e.g., Gaspari and Cohn, 1999)

Attributes of observable Vi
» Latitude/longitude/level

Cxy = C&x-y) = Colx—-yl)),
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Why we bother to use mean squared correlations?

* There exist a few adaptive localization
methods to estimate localization function
from instantaneous ensemble correlations

* Laloyaux et al. (2018) for SCDA:

» the localisation function diagnosed from
Meénétrier et al. (2015a,b) is also noisy because
of the limited ensemble size (25 members). To
fully remove these spurious correlations, several
solutions could be considered and combined:

- averaging the localisation diagnostic over
several cycles to get a cleaner localisation
function
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What function can be a localization function?

* Well-known sufficient condition for model-space localization:
» If localization matrix is positive semidefinite, then the analysis is well-defined

» This is restrictive when constructing a localization function because one
localization weight (between a pair of analysis variables) cannot contradict with
the other localization weights

* Obs-space localizations for serial EnSRF and LETKF are less restrictive:

» If only each localization weight (between each pair of an analysis variable and
an observable) is nonnegative, then the analysis is well-defined

» We can choose localization weights independently from each other
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Validity as a localization function: Serial EnSRF

* As long as localization weight p; between the * analysis variable and

the jt observation is within [0, 1], update by the single observation is
well-defined

> p;HX(HX)T + R; is positive scalar if R; >0 and p; Z 0
* Recursively, assimilation of any set of observations is well-defined

> However, combined with localization, the final analysis depends on the order of
assimilation (e.g., Kotsuki et al. 2017)

44444
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Validity as a localization function: LETKF

* Aslong as the localization weight p; between ith analysis variable and jt
observation is within [0, 1], local update is well-defined

» For an analysis of ith analysis variable, localization substitutes as
[R™]; < V(p;pi)[R™]; for observations j and k. First deal with nonzero weights;
with D = diag(Vp;y, ..., Vp;,), R* is replaced with DR™D. However, (DR'D)* = Dr
IRD! meaning observation error correlation matrix is unchanged but just
variances are changed. For zero weights, we can use the fact that principal
submatrices of a positive-semidefinite matrix are positive-semidefinite. These
operations keep the matrix positive semidefinite

» This ensures (k—=1)I + Y'R'Y is positive definite symmetric
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Computation cost is acceptable

 Sampling A

» 1E+9 pairs total for 100 pairs of variable types

» Several hours with a single processor. Parallelizable Except for 10, the

) . training cost will be

* Learmng almost independent

» 8E+6 samples times 3 epochs for each pair of observation and of model resolution.

analysis variables
» Tens of minutes with a single processor. Parallelizable )

 Evaluation of a neural network

» O(100p) floating point computation for each analysis variable.
This is less than LETKF’s cost O(k3 + pk?)
(p: # of local observations, k: ensemble size)
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Known computational issue

* For purely distance-based localization, there is
established and fast algorithms to select nearby
observations

» k-D tree, octree, and other spatial decompositions

» One distance evaluation can reject many faraway
observations

* Nothing similar is available for selecting relevant
observations for neural net-based algorithm

Figure A.1: Horizontal schematic of Octree application on spherical coordinate. The
pink box is one of the three-time-divided boxes, which is 45 degrees in longitude

) TO a I IeVI ate t h e |OO ku p CO St' I d O n Ot eva I u ate and 22.5 degrees in latitude. The green box is one of the four-time-divided boxes.

The green cross, dots, and circle show the center of the green box (at 39.375°N

78.75°W), hypothetical ob:

observations outside a 3000 km range in current s i e et
experiments

wtions in the green box, and the radius of the box
approximately 943 km), respectively. Note that the
only in the intersection of the green box and circle.
Queries like the blue (red) circles intersect (does not intersect) with the green circle
and may (may not) find observations in the green box.




Another computational issue

* For LETKF that uses same localization weight for all the model variable
types, we can reuse analysis weights (w°2" and W) for collocated
analysis variables

> Mentioned in Hunt et al. (2007), implemented in Miyoshi’s SPEEDY-LETKF
» This reduces the analysis cost by few times

* In principle, we cannot reuse analysis weights for localization method
that considers variable types

» This is also true for “variable localization” of Kang et al. (2011)
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Training samples of FOAM

1. Sample time ¢ uniformly randomly from the available period.

2. Sample analysis grid index (i, j, k) uniformly randomly on the model coordi-
nate. Repeat sampling if the analysis grid is topographically masked. For

vertical coordinate, model levels are directly used as in Figure XXX for sim- 3. Sample uniformly random (1,6, zos) (r € [0, Tmax), 0 € [0,27)), where Toax =

plicity: 3000 km, @ is the azimuth angle, and z,, is observation levels in model levels®.

4. Using analysis location and (r,#, z,,s), get the observation location. Repeat

sampling (step 3-4) if observable is topographically masked.

5. Get background ensemble of the analysis variable and the observable by apply-
ing observation operator to the background ensemble of state vectors. Here,

observation operators are just horizontal interpolation.

6. Calculate and save the background ensemble (sample) correlation between the

analysis variable and the observable.
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Comparison: FOAM and CFS oceans

(a)

SSH [m] on 00Z, Dec 30 (arbltrary year)

(b) ssH [m] on 002, Jun 01, 2006 (15t men b)




