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Outline – Localization modeling with a neural network
1. Background and approach
2. Experiments with toy “correlation models”
3. Background error correlations in the atmosphere-ocean systems
4. Experiment as a localization function
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Localization for atmos-ocean strongly coupled DA
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Homework from Travis Sluka (2018)
› Using vertical and variable localization 

as a form of correlation cutoff method 
is vital when using a limited ensemble 
size. These cross-domain state 
variables with small correlations need 
to be removed in the data assimilation 
step in order to avoid the detrimental 
impact of spurious correlations in the 
ensemble.



Localization not based on distance
• Variable localization (Kang et al., 2011)

› By not assimilating CO2 concentration observation to humidity,
for example, the analysis accuracy improves
(LETKF experiments with dynamics-carbon coupled model)

• Then how can we optimize localization for coupled Earth system models 
with growing complexity?

› We may use physical intuitions as Kang et al.

› We don’t want to try switching on/off
assimilation between every pair of variables
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What is a localization function (obs space)?
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Some multivariate function



Mean squared error correlation as a “distance”
Reduction of analysis error variance by single-observation assimilation

› The relative accuracy of the observation to the background (~ DFS in the observation space)

› The square of background error correlation between observed and analyzed variables

We should only assimilate observations whose background error is well-correlated with 
the analysis variable’s background error (correlation-cutoff method)

› Improves EnKF with a toy atmosphere-ocean coupled model (Yoshida and Kalnay, 2018 MWR)
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How to construct a localization function?
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Some multivariate function



How to construct a localization function?
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This can be done with a neural network
(or other nonlinear regression)

and data from ensemble DA

This is univariate
and far easier
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Toy correlation models
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Multivariate error correlations 
under geostrophy

Schematic from Kalnay (2003). Contours and shadings are redundant



Neural network + noisy training data

11Superimposed numbers are RMS regression error to validation dataset

..............

.........

Inputs are either
- (x, y)
- (r)
- (r, θ)
- (r, cosθ, sinθ)

where
r = √x2+y2

θ = arctan(y/x)

Output
“correlation”

10 hidden
units (tanh)

! = #2 tanh[#1+ + -1] + -2

For each correlation model,
we prepare 1000 training data:

1. Randomly sample |x|, |y| < 2

2. Calculate value at (x, y) and 
add Gaussian error with STDV = 0.2
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Surface ensemble correlations (FOAM, 1.4-2.8 deg ocean)
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Two strongest (pointwise) 
mean B correlations seen in 
FOAM-LETKF

FOAM stands for Fast Ocean Atmosphere Model (Jacob 1997)

Surface air T and SST

› Error correlation of 0.4 means 
strongly coupled DA can 
reduce up to 16% of variance

V-wind and U-current

› Can be explained by the 
linearized Ekman layer 
dynamics, where subsurface 
water transport is to the right 
of wind direction in NH



More examples of FOAM ensemble correlations

B correlation to an observation 
background:  proxy to single 
observation assimilation increment 
(normalized by B variance)

14Contour is RMS of ensemble correlation, which includes time-dependent (or flow-dependent) portion

An air-T observation can 
constrain temperature 
analyses of atmosphere 
and ocean

A surface U-current 
observation can constrain 
U-current and V-wind fields



Error correlation reproduced by neural networks
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..............

.........

Inputs
- Horizontal distance
- Analysis level
- Analysis latitude
- Observation level

Output
(Squared) background
ensemble correlation

One network for each
- Observation type
- Analysis variable type

30 hidden units (tanh)

Many instances
simply averaged

B correlation reproduced
by neural networks
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CFSv2-LETKF (0.25-0.5 deg ocean; 40 mem; mean of June 2006)

• Strong T-T correlation at sea ice (FOAM 
lacks) boundaries and equatorial upwelling

• The small wind-current error correlations in 
CFS may be associated to more internally 
chaotic ocean current in CFS
› i.e., less dependent to atmosphere

› Estimation by a single column model without 
horizontal dynamics (Smith et al., 2017) had the 
similar conclusion with FOAM

• Every model is a limited representation of 
the truth or the error structure
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FOAM

CFS

Special thanks to Travis Sluka, Sreenivas Pentakota, and Eviatar Bach
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Preliminary 64-member single window OSSE
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• For neural net-based experiment (“neural”), 
piecewise quadratic function with cutoff 
squared correlation of 0.2 is used

› Neural experiment is not tuned at all.
Results are just for proof-of-concept

• Control SCDA experiment (“control”) uses
› 1000 km horizontal localization for atmosphere

› 400 km horizontal localization for ocean

› 3 levels vertical localization for atmosphere

› 5 levels vertical localization for ocean

› Frolov et al. (2016) cross-localization

Neural net-based squared correlation
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First window analysis: ocean T at equator
Neural experiment has smaller 
analysis error throughout the 
depth and also have smoother 
error field
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(Common) background error

Analysis error of control Analysis error of neural 



First window analysis: atmosphere surface U
• Neural experiment has larger 

analysis error over ocean (where 
wind is not directly observed)
› It seems discounting the U 

(analyzed) - T (observed) 
correlation too much

• It has good error-spread 
relationship for both observed 
and unobserved regions
› What if cycled?
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Analysis error of control Analysis error of neural 



Computation cost (compared to an ordinary localization function)
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• Computation time taken for three windows of analyses (including fcst)
› Both evaluates up to 3000 km distance and �16 vertical levels
› SCDA with ordinary localization function (Frolov et al. 2016)

• 5 mins 48 secs

› SCDA with neural net-based weighting
• 6 mins 8 secs (+5.7%)

• The neural net evaluation is roughly less than 10% of total LETKF computation

• Direct increase of computation time is acceptable
› Indirect increase is expected due to increased number of observations whose 

localization weight is actually evaluated (common problem for any advanced 
localization method; alleviated combined with physical cut-off distance)



Summary – Localization modeling with a neural network

• Variable and spatial localization is key for strongly coupled DA
• Mean squared ensemble correlation can be used as a “distance”
› An objective criterion for spatial/variable localization (correlation-cutoff method)

• Neural networks can be used for localization modeling
› Mathematically qualified as a localization function for serial EnSRF and LETKF
› Acceptable training and evaluation costs
› We’re working on cycle DA experiments

• Training data is available from ensemble DA
› However, error correlation structure highly depends on processes resolved by 

the coupled models
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Backups
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Derivation
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Reasons for choosing neural networks
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Distance-only localization
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Physical distance
between xi, yj Some decreasing function

(e.g., Gaspari and Cohn, 1999)



Why we bother to use mean squared correlations?

• There exist a few adaptive localization 
methods to estimate localization function 
from instantaneous ensemble correlations

• Laloyaux et al. (2018) for SCDA:

› the localisation function diagnosed from 
Ménétrier et al. (2015a,b) is also noisy because 
of the limited ensemble size (25 members). To 
fully remove these spurious correlations, several 
solutions could be considered and combined:
- averaging the localisation diagnostic over 
several cycles to get a cleaner localisation
function
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Localization function to SST 
observation, estimated by 

instantaneous ensemble correlations

Bishop and Hodyss (2009), Anderson (2007, 2012)



What function can be a localization function?
• Well-known sufficient condition for model-space localization:
› If localization matrix is positive semidefinite, then the analysis is well-defined
› This is restrictive when constructing a localization function because one 

localization weight (between a pair of analysis variables) cannot contradict with 
the other localization weights

• Obs-space localizations for serial EnSRF and LETKF are less restrictive:
› If only each localization weight (between each pair of an analysis variable and 

an observable) is nonnegative, then the analysis is well-defined

› We can choose localization weights independently from each other
(at least mathematically)

29Gaspari and Cohn (1999)



Validity as a localization function: Serial EnSRF
• As long as localization weight ρij between the ith analysis variable and 

the jth observation is within [0, 1], update by the single observation is 
well-defined
› ρijHjX(HjX)T + Rjj is positive scalar if Rjj > 0 and ρij ≧ 0

• Recursively, assimilation of any set of observations is well-defined
› However, combined with localization, the final analysis depends on the order of 

assimilation (e.g., Kotsuki et al. 2017)
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Validity as a localization function: LETKF
• As long as the localization weight ρij between ith analysis variable and jth

observation is within [0, 1], local update is well-defined
› For an analysis of ith analysis variable, localization substitutes as

[R-1]jk ← √(ρijρik)[R-1]jk for observations j and k. First deal with nonzero weights; 
with D = diag(√ρi1, ..., √ρip), R-1 is replaced with DR-1D. However, (DR-1D)-1 = D-

1RD-1 meaning observation error correlation matrix is unchanged but just 
variances are changed. For zero weights, we can use the fact that principal 
submatrices of a positive-semidefinite matrix are positive-semidefinite. These 
operations keep the matrix positive semidefinite

› This ensures (k–1)I + YTR-1Y is positive definite symmetric
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Computation cost is acceptable
• Sampling
› 1E+9 pairs total for 100 pairs of variable types
› Several hours with a single processor. Parallelizable

• Learning
› 8E+6 samples times 3 epochs for each pair of observation and 

analysis variables
› Tens of minutes with a single processor. Parallelizable

• Evaluation of a neural network
› O(100p) floating point computation for each analysis variable.

This is less than LETKF’s cost O(k3 + pk2)
(p: # of local observations, k: ensemble size)
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Except for IO, the 
training cost will be 
almost independent 
of model resolution. 



Known computational issue
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• For purely distance-based localization, there is 
established and fast algorithms to select nearby 
observations
› k-D tree, octree, and other spatial decompositions
› One distance evaluation can reject many faraway 

observations

• Nothing similar is available for selecting relevant 
observations for neural net-based algorithm
› To alleviate the lookup cost, I do not evaluate 

observations outside a 3000 km range in current 
experiments



Another computational issue
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• For LETKF that uses same localization weight for all the model variable 
types, we can reuse analysis weights (wbar and W) for collocated 
analysis variables
› Mentioned in Hunt et al. (2007), implemented in Miyoshi’s SPEEDY-LETKF
› This reduces the analysis cost by few times

• In principle, we cannot reuse analysis weights for localization method 
that considers variable types
› This is also true for “variable localization” of Kang et al. (2011)



Training samples of FOAM
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Comparison: FOAM and CFS oceans
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