

CPAESS

METOP-C RO Evaluation for NCEP Operations

Suryakanti Dutta¹, Francois Vandenberghe¹, Hui Shao¹, Hailing Zhang¹ & James G. Yoe²

1. Joint Center for Satellite Data Assimilation / UCAR, 2. National Weather Service / NOAA

1. INTRODUCTION

Optimal use of resources and betterment of NWP model forecasts requires regular monitoring and evaluation of assimilated dataset. This is an ongoing effort towards monitoring and assessment of <u>GNSS</u> (Global Navigation Satellite System) RO (Radio Occultation) observations. from both existing and new GNSS-RO platforms. Assessment of the RO data currently involves only the Bending Angle observation. NCEP's GSI (Grid-point Statistical Interpolation) 4D-EnVar analysis scheme & GFS (Global Forecast System) is used as assimilation and forecast system for the experiments

Observations from new GNSS-RO platforms currently under investigation are:

Platforms	GPS Sensor	Processing Center
KOMPSAT-5 {Korea Multi-Purpose Satellite-5}	IGOR	CDAAC, UCAR
	{Integrated GPS Occultation Receiver}	
METOP-C {Meteorological Operational Polar	GRAS	ROM SAF,
Satellite – C}	{GNSS Receiver for Atmospheric Sounding}	EUMETSAT
PAZ {SEOSAR / PAZ - Satélite Español de	IGOR +	CDAAC, UCAR
Observación Synthetic Aperture Radar}	{Advanced GPS Receiver IGOR}	

3. PRE-MINIMIZATION DIAGNOSTICS (DATA ACTUALLY USED FOR ASSIMILATION)

▶ Pre-Minimization diagnostics represent the diagnostics of the observations available for assimilation

5. Observations are below 8km

2. PRE-QUALITY CONTROL DIAGNOSTICS (DATA AVAILABLE FOR ASSIMILATION)

- ▶ Pre-Quality Control diagnostics represent the diagnostics of full set of observations as available for operational use.
- The observations (O) [here 'Bending Angle'] are evaluated against background information (B) from NCEP's operational 6hr-forecasts.
- ▶ Bias & RMS diagnostics presented here are normalized against the model background.
- Diagnostics represents the mean value for the period of January-2019.

4. FORECAST SCORE-CARD

* Forecast verification of METOP-C involves its assimilation and forecast in cyclic mode, in two phases - Winter & Summer Cycle. Winter cycle is presented here.

Diagnostics from the winter cycle covers the period <u>01-31 January</u>, <u>2019</u>.

5. SUMMARY ➤ Daily occultation profiles and Mean Observation Count of METOP-C is higher compared to COSMIC-1, KOMPSAT-5 (only setting profiles) & PAZ Pre-quality control diagnostics shows comparatively higher bias and RMS of METOP-C bending angle over levels below 600hPa or 8 km. impact height.

- All METOP-C bending angle observations below 8km. impact height are rejected by GSI.
- Post-quality control / Pre-minimization diagnostics shows Bias and RMS characteristics of METOP-C above 600hPa similar to the other GNSS-RO platforms.
- Significant improvement in Temperature and Vector Wind forecast RMSE is observed over Tropics and Northern Hemisphere at higher atmospheric levels.
- Forecast deterioration is observed for temperature forecasts close to the surface over Northern Hemisphere.
- Temperature forecasts have higher Bias close to surface and at higher atmospheric levels over Northern Hemisphere and North American region.

6. CURRENT STATUS

- ✓ The evaluation of METOP-C is ongoing and a summer cycle is needed for proper assessment.
- The necessary steps for inclusion of the METOP-C bending angle in real-time assimilation suite of operational runs are in progre

7. ACKNOWLEDGEMENT

- $\begin{tabular}{l} & \textbf{We thank ROM SAF, EUMETSAT for providing the processed METOP-C GNSS-RO observations.} \\ \end{tabular}$
- * We are thankful to CDAAC, UCAR for providing the processed KOMPSAT-5 and PAZ GNSS-RO