

Indigenous Peoples Capacity Building Initiative

In-person remote sensing training, place-based approaches, community engagement, with the hope of incorporating Traditional Ecological Knowledge (TEK)

COMMUNITY ENGAGEMENT

Engaging with Indigenous Communities through tribally-focused conferences and meetings with regional governmental agencies, Climate

Science Centers, and universities.

(

TRADITIONAL ECOLOGICAL KNOWLEDGE

PLACE -BASED APPROACHES

Integrating traditional ecological knowledge towards natural resource/natural element management and conservation.

Partnering with tribes,
government agencies, and
affiliated groups to develop technical remote
sensing workshops and trainings applied to
specific regions and/or thematic areas.

TECHNICAL WORKSHOPS

Water Resources

http://ec2-54-196-147-232.compute-1.amazonaws.com/dgw/sims/

https://aso.jpl.nasa.gov/

Western Water Applications Office (WWAO)

Accelerating the application of NASA Observations and scientific analysis techniques to tangible, important, and timely water management problems

Seeking project ideas and partner organizations!

The Navajo Nation

 Largest federally-recognized tribe in the United States in land area: over 70,000 km²

Population of over 200,000

• 5 Agencies and 110 Chapters

Drought on The Navajo Nation

The Navajo Nation: Prone to frequent and pervasive droughts

Climate and Hydrology

- Two wet seasons (winter, summer)
- Increasing precipitation variability
- Warming temperatures

NAVAJO NATION ANNUAL PRECIPITATION ANOMALY (IN) 8 6 6 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

NAVAJO NATION ANNUAL TEMPERATURE ANOMALY (F)

Figure credit: Crimmins et. al, 2013

Water Supply and Drought Reporting Challenges

- Low reliability and limited direct residential access to supply
 - 40-55% of homes lacking direct access to public water systems
 - Increased water hauling during dry periods
 - Mitigation efforts are resource intensive
- Limited precipitation and runoff data
- Coarse spatial resolution of regional drought indicators

Image credit: CBS News

Image credit: Western Regional Climate Center (WRCC)

Drought Reporting

- Navajo Nation Department of Water Resources (NNDWR) conducts monthly and annual drought assessments
 - 6-month Standardized Precipitation Index via the Western Regional Climate Center (WRCC)
 - US Drought Monitor designations
 - NN rain gauge data
- Reports to the Navajo Nation Department of Emergency Management (NDEM)
 - Drought Contingency Plan
 - Declare drought designation
 - Mitigation and action plans to reduce risk in advance of drought

Project Goal

Improve NNDWR drought reporting through Earth Observations and *in-situ* data within a user-friendly web application

Decision-making context: More appropriate allocation of drought relief dollars to regions on the NN that have the greatest need

Drought Data Sources: NN Rain Gauge Data

85 rain gauge stations across the NN

 Precipitation measurements obtained on quasi-monthly basis

Site visits by NNDWR personnel

• 10-day window

Drought Data Sources: Remote-Sensing

- Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM)
 - NASA & JAXA (Japanese Space Agency) Joint Missions
 - TRMM: Nov 27, 1997 Apr 15, 2015
 - GPM: Feb 27, 2014 present
- Multi-satellite Precipitation data product (3B43)
 - TRMM and GPM
 - Monthly from 1998 present at 0.25° (~22.5 km) resolution
- Integrated Multi-satellite Retrievals for GPM (IMERG)
 - Monthly from 2014 present at 0.1 ° (~9km) resolution

Drought Data Sources: CHIRPS SPI

- The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is an over 30-year quasi-global rainfall dataset
- Incorporates 0.05° resolution satellite imagery with *in-situ* station data to create gridded rainfall time series
- Standardized Precipitation Index (SPI):

SPI Value	Drought Intensity Interpretation
-0.4 to 0.5	Near Normal
-0.5 to -0.7	Abnormally Dry
-0.8 to -1.2	Moderate Drought
-1.3 to -1.5	Severe Drought
-1.6 to -1.9	Extreme Drought
≤-2.0	Exceptional Drought

Drought Severity Evaluation Tool (DSET)

Step 1: Rain Gauge and CHIRPS Comparisons

- 11 NNDWR rain gauges
 - Down-selected based on record length, consistency, and location
 - Date Range: January 2011-December 2017

- Monthly total precipitation comparisons:
 - NNDWR rain gauges vs. CHIRPS (pixel location)
 - Agencies vs. CHIRPS (average totals for region)
 - Chapters vs. CHIRPS (average totals for region)

Step 1: Rain Gauge and CHIRPS Comparisons

- 11 NNDWR rain gauges
 - Down-selected based on record length, consistency, and location
 - Date Range: January 2011-December 2017

- Monthly total precipitation comparisons:
 - NNDWR rain gauges vs. CHIRPS (pixel location)
 - Agencies vs. CHIRPS (average totals for region)
 - Chapters vs. CHIRPS (average totals for region)

Step 2: Develop the DSET Webtool

DEVELOP Pilot Project

DSET via Climate Engine

DSET via Google Earth Engine

Next Steps

- Continued comparisons of remotely sensed and in-situ precipitation data
- Create rain gauge point locations and ingest data into Climate Engine DSET
- Add TRMM and GPM data into Climate Engine DSET
- Conduct in-person tool training/feedback session with NNDWR
- Web development for beta DSET tool and revisions based on partner requests
- Integration of web tool outputs into drought status report

