The role of bottom enhanced turbulence and non-linear internal waves on the diapycnal velocities and cross-slope circulation in upwelling regions.

Marcus Dengler¹, Marin Visbeck¹, Kevin Lamb², Toste Tanhua¹, Jan Lüdke¹, Thilo Klenz³

¹ GEOMAR Helmholtz Centre for Ocean Research Kiel and Kiel University, Germany
 ² University of Waterloo, Ontario, Canada
 ³ University of Alaska Fairbanks, Alaska, USA

Peculiarities of tropical upwelling regions

Marcus Dengler¹, Marin Visbeck¹, Kevin Lamb², Toste Tanhua¹, Jan Lüdke¹, Thilo Klenz³

¹ GEOMAR Helmholtz Centre for Ocean Research Kiel and Kiel University, Germany
 ² University of Waterloo, Ontario, Canada
 ³ University of Alaska Fairbanks, Alaska, USA

Major Oceanic Upwelling Regions

- Coastal upwelling is predominately forced by alongshore winds and wind curl.
- However, coastal upwelling in tropical regions (<15°) often exhibit seasonal upwelling maxima out of phase with seasonal wind forcing variability.

HELMHOLTZ

Motivation: Peruvian upwelling region (<15°S)

- <u>"Upwelling season" Austral summer</u>
- Seasonal minimum of alongshore winds & curl
- Chlorophyll maximum
- Maximum in SST
- Maximum cross-shore SST gradient
- "Non-upwelling season" Austral winter
- Seasonal maximum of alongshore winds & curl
- Chlorophyll minimum
- Minimum in SST
- Minimum in cross-shore SST gradient

(Echevin et al., 2008)

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Measurement program off Peru in austral summer

FS Meteor cruise M90-M93, M135-138 (2013 and 2017)

CTD / turbulence measurements

Mooring program

Tracer release experiment

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Cross-slope velocity on the Peruvian shelf

Winds and Ekman transport

Hourly winds off Peru from Jan. 5 to Feb. 3, 2013

 Water Depth
 Ekman transport (T_E)

 <125m</td>
 0.16 m²s⁻¹

 <500m</td>
 0.24 m²s⁻¹

 all
 0.26 m²s⁻¹

Currents on the Peruvian shelf

• Variable currents on the Peruvian shelf

Bores on the Peruvian shelf

- sequences of strong baroclinic across-shore velocity pulses of 5-10 min. duration occur every 12 hours.
- ⁵ > pulses are associated with elevated vertical velocity
 ⁰⁵ displacing solutes from nearsurface to 30-40m depth

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES Very-high resolution simulation of velocity variability generated by the barotropic tide impinging on the shelf

Onshore transport by NLIWs due to Stokes drift

$$T_{NLIW} = \int \frac{\Delta(z)}{\tau(z)} dz, \quad \Delta(z) = \int_{x'}^{x_{end}} \frac{U_w(x,z)}{c - U_w(x,z)} dx$$

(e.g. Huthance, 1995; Lamb, 1997)

- is the wave duration time $\tau(z)$
- $\Delta(z)$ is particle transport distance due to Stokes drift
- phase speed of the NLIW С

25

30

Uw particle velocity

 $\eta(m)$

c was determined from Dubreil-Jacotin-Long model

0.5 \sim

0.4

0.1

0.0

 $(ms^{-1})^{0.0}$

C

(Long, 1953; Stastna and Lamb, 2002)

NLIW onshore transport due to Stokes drift

GEOMAR

SFB 754

Conclusion I

- Coastal "upwelling" of Peru during upwelling season is likely not related to offshore Ekman transport
- Instead, net onshore transport due to nonlinear internal waves may occur

Motivation of the tracer release experiment

Artificial tracer (SF_5CF_3) represents nutrients from anoxic sediments

Nutrient flux from the sediments are potentially important for the development of oxygen minimum zone

Objective:

- Investigate spreading pathways and fate of nutrients released from the sediments
- Study exchange between the continental margin and ocean interior

Picture from Madeline Freund

Tracer release experiment at the continental slope off Peru 2015-2017

- About 70 kg of SF₅CF₃ were injected into the bottom boundary layer of the Peruvian continental slope in October 2015.
- Tracer was released at three sites at 250m depth and sampled 17 month later.

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Temperature, salinity and density during injection of the tracer.

Tracer survey cruise on RV METEOR

Depth-integrated tracer concentrations from survey in March 2017 $[nmol m^{-2}]$ 5°S 0.5 a) POSTRE 17 months after inj. 0.45 (survey stations) $10^{\circ}S$ 0.4 0.35 15°S 0.3 0.25 20⁰S 0.2 0.15 00 25⁰S 0.1 0.05 30°5 0 84°W 72⁰W 88°W 80°W 76°W

Tracer survey:

- March 2017, ~17 months after injection
- 132 stations (10-30°S, coast to 86°W)

Results:

- ~40±10% of tracer found
- 2000 km southward and 1400 km offshore of release site
- \succ more than 2.10⁶ km² covered

Exchange of tracer between the continental slope and ocean interior

Density change / vertical displacement of the tracer's center of mass

- Density of tracer's center of mass decreased by 0.13 kgm⁻³.
- Corresponds to an upward displacement of about 70m
- Density change / vertical displacement is independent of region!

Tracer distribution in Θ -S space and related water masses

ESSW - Equatorial Sub-Surface Water with linear ⊕-S, transported by PCUC
ESPIW – Eastern South Pacific Intermediate Water, low salinity (~150m)
SEPSTMW - South Pacific Eastern Sub-Tropical Mode Water

AAIW - Antarctic Intermediate Water

Density of the tracer's center of mass density decrease (0.13 kg/m³) due to

HELMHOLTZ

- warming by 0.28°C
- freshening by 0.10 g/kg

Diapycnal mixing processes at the Peruvian continental margin

- TKE dissipation rates determined from 1300 loosely-tethered microstructure profiles collected along the continental margin of Peru during 8 cruises (2013-2017)
- Near-bottom mixing is enhanced by an order of magnitude

Diapycnal mixing processes at the Peruvian continental margin

Vertical density flux convergence leads to downward diapycnal velocities (Ferrari et al., 2016)

Evaluating upward along-slope diapycnal velocities

- > We assumed that diapycnal downwelling ε_{SML} in the stratified mixing layer induces diapycnal upwelling ε_{BBL} in the BBL
- > Evaluating $\overrightarrow{\epsilon_{SML}} \cong -\rho_0 g^{-1} \Gamma \frac{\partial \epsilon}{\partial \rho} \overrightarrow{n_z}$ from microstructure profiles collected between bottom depth of 200m and 280m yields: $\epsilon_{SML} \approx -0.5 \text{ m day}^{-1}$.

Residence time of the tracer at the eastern boundary

Density flux determined from all profiles measured at bottom depth between 200m and 280m.

- > Assuming $\varepsilon_{SML} = -\varepsilon_{BBL}$ yields diapycnal upwelling velocities of 0.5 m day⁻¹ in the BBL.
- A residence time in the BBL requires to be about 1.5 to 3 month to explain the density change of the tracer's center of mass of 0.13 kg m⁻³

Caveat:

- Vertical distribution of the density flux does not decrease near the bottom (vanishing flux at the bottom is required)
- A BBL is not obvious in the data!

Conclusion II

- At the Peruvian continental slope, turbulent mixing processes exhibit a near-bottom maximum that is estimated to drive a diapycnal downwelling of 0.5 m day⁻¹ in the lower 50-100m of the water column.
- Diapycnal upwelling in the bottom boundary layer can explain the density decrease of the tracer's center of mass, requiring a BBL residence time of the tracer of 1.5 to 3 month.

Upwelling in the bottom boundary layer provides a direct pathway for nutrients released from the sediment to contribute to primary production in upwelling region.

An International Field Campaign (about 2025) - Documenting a whole year of Canary Upwelling

Perform concerted multi-disciplinary, multi-parameter, multi-platform study

