F.W. Goldsworth, D.P. Marshall, H.L. Johnson

Symmetric instability in cross equatorial western boundary currents

fraser.goldsworth@physics.ox.ac.uk

http://earth.nullshcool.net

The global conveyor

Interactions between the sub-mesoscale and global scale circulations

- Northward flowing surface current
- Southward flowing deep western boundary current
- Global scale current, drives
 cross-equatorial flow
- Can sub-mesoscale instability at the equator lead to a bottleneck?

Image credit: Greg Holloway, Dan Wright

Tropical circulations

- Northward flowing surface currents
 - North Brazil Current & rings
 - Equatorial Counter Current
- Southward flowing deep western boundary current

Dengler et al. (2004)

 $) \bigcirc \bigcirc$

Potential vorticity And a necessary condition for symmetric instability

• PV is materially conserved:

- SI if fQ < 0
 - If initially stable in SH, not stable in NH
- Growth rate $\sigma^2 \approx -f(f + dV/dx)$
 - Need large horizontal shear

What does symmetric instability look like?

- Predictions from a linear stability analysis
- Stacked overturning cells
- Localised in regions of negative PV
- Could be an important mixing mechanism

An idealised model

- Simplifications made:
 - Brazil is a straight line
 - No topography
 - Open boundaries (sponged)
- Unstable regions have negative PV in the northern hemisphere

An idealised model **Two types of instability**

- PV at 50 m
- What's going on?
 - 1. Eddy field develops as fluid crosses the equator — e.g. Edwards & Pedlosky, 1998; Goes et al. 2009.

An idealised model **Two types of instability**

- PV at 50 m
- What's going on?
 - 1. Eddy field develops as fluid crosses the equator — e.g. Edwards & Pedlosky, 1998; Goes et al. 2009.
 - 2. SI is excited from 300 km North of the equator.

PV and relative vorticity

Sign of RV and PV uncorrelated \implies planetary vorticity dominates

Conclusions

- flows.
- currents.
- We can see the effects of the instability on:
 - potential vorticity of eddy cores
 - correlations between potential and relative vorticity
- Next steps:
 - Deep western boundary currents
 - LLC4320 model
 - Existing glider datasets?

• From theoretical considerations we might expect to observe symmetric instability in cross-equatorial

• Symmetric instability has been observed in an idealised model of cross-equatorial western boundary

• For more details see Goldsworth et al. (2021), *Journal of Physical Oceanography* (early online release)

Supplementary slides

Instability & power spectra

- Spatially Fourier transform $w^2/2$ at 50 m
- Plot at week long intervals
- SI causes flattening and lifting of the spectra
- See also Yankovsky & Legg (2019)

Evidential summary

- 1. Regions of negative PV are unstable
- 2. Vertical scale
- 3. Horizontal scale
- 4. Time scale
- 5. Viscosity dependence
- 6. Structure of overturning
- 1. 3 dimensional models
- 8. Power spectra of the vertical KE
- 9. Correlations between PV and relative vorticity

General agreement between linear stability analysis, simplified two dimensional models and

Why symmetric instability?

Predictions from a hierarchy of models

2D numeric overturning streamfunction

Longitude (km)

Longitude (km)

Water mass formation The Wallin framework

 $\Delta \psi = \psi_N - \psi_S$

 y_N

Water mass formation The Wallin framework

 $(\times 10^{12})$ formation lass water m

250

-2 -4 02

80

40

16

