Impact of intraseasonal waves on Angolan warm and cold events

Rodrigue Anicet Imbol Koungue & Peter Brandt

PIRATA 24 – TAV meeting 10-14 May 2021

Motivations

HELMH

Spaces II

Imbol Koungue & Brandt | Intraseasonal variability of the Angola current

HELMHO RESEARCH FOR

Spaces II

Data

- Mooring records (July 2013 July 2019).
- Aviso sea level anomaly $(\frac{1}{4}^{\circ})$ horizontal resolution, daily, from 1993 2019).
- Optimum Interpolation sea surface temperature Version 2 (OI-SSTv2, ¹/₄° horizontal resolution, daily, from 1982 2018).

Methods

- Hilbert Empirical Orthogonal Functions (HEOF).
- Harmonic analyses

► Ueg = $\left[-\frac{g}{\beta} \cdot \partial_{yy}ADT\right]$ for the zonal equatorial geostrophic currents (1°S - 1°N) calculated using **A**bsolute **D**ynamic **T**opography.

Imbol Koungue & Brandt | Intraseasonal variability of the Angola current

BANINO HELMHOLTZ RESEARCH FOR Spaces II HELMHOLTZ RESEARCH FOR

Resonant condition

$$\mathbf{T}_{\mathsf{m},\mathsf{n}} = \frac{4L}{mC_n}$$

- T is the resonant period
- L is the basin width (5.8*10⁶ m)
- m represents the rank of the equatorial basin mode (for instance m = 1 is the gravest basin mode (maximum sea level variability at the boundaries).
- **C**_n is the gravity phase speed of the nth baroclinic mode (Fu, 2007; Han et al., 2011; *Brandt et al., 2016;* Kopte et al., 2018; Imbol Koungue et al., 2021).

BAN

HEI MI

What is the origin of the intraseasonal variability (90-day and 120-day periods) in the alongshore moored velocities at 11°S?

Do these intraseasonal waves have an impact on the sea surface temperature in the Angolan upwelling system?

Representation of the 90-day and 120-day harmonics of the alongshore velocities at 11°S (2013-2019)GEOMAR

Representation of the 90-day and 120-day harmonics of the alongshore velocities at 11°S (2013-2019)GEOMAR

Imbol Koungue & Brandt | Intraseasonal variability of the Angola current

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

BANIN

Spaces II

Representation of the 90-day and 120-day harmonics of the meridional velocities (2013-2019)

Maximum amplitude of the absolute meridional geostrophic current is observed along the west coast of Africa, north of 17°S.

Imbol Koungue & Brandt | Intraseasonal variability of the Angola current

BANINO HELMHOLTZ RESEARCH FOR Spaces III HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Amplitudes of the **120-day harmonics** of the equatorial **SLA**, from 1993-2018

SLA

Amplitudes of the **120-day harmonics** of the equatorial **SLA**, **Ueg** from 1993-2018

SLA Ueg

Illustration of the horizontal structure of the amplitude and phase of the 120-day variability of SLA

BAN

HELM

Forcing of the 120-day equatorial basin mode

- □ Caribbean basin (*Hughes et al.,* 2016)
- NECC region (wind-forced Rossby waves)

Impacts on sea surface temperature (SST) off Angola: HEOF1 of intraseasonal (75-135d) SLA in the South-east Atlantic

Coastally trapped waves propagate along the northwest and Southwest coast of Africa

Impacts on sea surface temperature (SST) off Angola: HEOF1 of intraseasonal (75-135d) SLA in the South-east Atlantic GEOMAR

BANIN

Spaces II

HELMF

Impacts on sea surface temperature (SST) off Angola: HEOF1 of intraseasonal (75-135d) SLA in the South-east Atlantic GEOMAR

BANIN

Spaces II

HELMH

Impacts on sea surface temperature (SST) off Angola: Regression of **SST** onto **PC1** of intraseasonal (75-135d) <u>SLA in the South-east Atlantic</u>

Impacts on sea surface temperature (SST) off Angola: Regression of **SST** onto **PC1** of intraseasonal (75-135d) <u>SLA in the South-east Atlantic</u>

BANIN

Spaces II

HELMHC

Impacts of intraseasonal CTWs on sea surface temperature in Southern Angola

Coastal events	Peak time	SST anomalies	BP SLA	Associated SST	Effects of the
in Southern	(date)	during the peak	anomalies 2	anomalies	intraseasonal
Angola		time	weeks before	corresponding to	waves.
			the SST peak	intraseasonal	
				стw	
1995 (warm)	March, 27	+ 2.23 °C	+ 2.86 cm	0.73°C	Strongly enhanced
1997 (warm)	October, 28	+ 1.45 °C	+ 0.30 cm	+ 0.08°C	Enhanced
1998 (warm)	June, 30	+ 1.73 °C	+ 1.45 cm	+ 0.37°C	Enhanced
2001 (warm)	April, 16	+ 1.73 °C	- 0.87 cm	- 0.22°C	Damped
2010 (warm)	March, 2	+ 2.05 °C	+ 1.15 cm	+ 0.29°C	Enhanced
2016 (warm)	February, 20	+ 1.88 °C	+ 2.73 cm	+ 0.70°C	Enhanced
1997 (cold)	April, 6	- 2.65 °C	- 1.49 cm	- 0.38°C	Enhanced
2010 (cold)	March, 7	- 1.57 °C	+ 0.82 cm	+ 0.21°C	Damped

Imbol Koungue & Brandt | Intraseasonal variability of the Angola current

Conclusion

The AC flow is dominated by periods of near AC, SAC, 90 and 120 days.

The 120-day variability is linked to the 2nd equatorial basin mode of the 2nd baroclinic mode.

BAN

Intraseasonal coastally trapped waves impact sea surface temperature variability off Angola and in the Gulf of Guinea via thermocline feedback.

HELN

Thank you for your attention !!!

Imbol Koungue, R. A., & Brandt, P. (2021). Impact of intraseasonal waves on Angolan warm and cold events. Journal of Geophysical Research: Oceans, 126, e2020JC017088. https://doi.org/10.1029/2020JC017088.

BAN