

Signatures of water vapor and precipitation, ENSO and accuracy revealed in GNSS RO

E. R. Kursinski, A. L. Kursinski (PlanetiQ)B. Sun, A. Reale, M. Pettey (NOAA STAR)

IROWG-8 April 12, 2021

PLANETI

- 1. Quick update on PlanetiQ Status
- 2. WV precipitation correlation
- 3. GNSS RO water vapor based ENSO Index
- 4. Sonde-Direct RO humidity comparisons
- 5. Histogram bias revealed and fixed => climate quality RO water vapor?
- 6. Remarkable HadGEM3 climate model performance

PLANETIQ

- Quick PlanetiQ update:
 - First PlanetiQ spacecraft launched August 2020 and failed
 - Problems identified and fixed
 - 2nd spacecraft scheduled to launch June 24, 2021
 - 3rd spacecraft scheduled to launch Dec 2021
 - Each spacecraft to provide ~2500 occ/day with SNRs > COSMIC-2
- Humidity results presented here
 - Water vapor derived via **Direct method** using NWP (ECMWF and GFS) temperature but not NWP water vapor
 - not 1DVar
 - RO data from COSMIC-2, COSMIC and CHAMP
 - Much of PlanetiQ research is funded by USAF

- Convergence and updraft associated with convective rainfall creates very high column water vapor, particularly apparent in free troposphere
- GNSS RO very good at measuring free troposphere water vapor

PLANETI Wet profiles correlated with IMERG precipitation maps Two Monthly comparisons: Jan 2020 & July 2020 Red: C2 profiles Purple: IMERG contours 40 30 20 Jan 2020 18°N 10 0 Jan 2020 -10 -20 -30 36°S -40 60°W 120°W 60°E 120°E 180 180 -100 150 -150 -50 0 50 100 40 36°N Jul 2020 30 20 18°N 10 0 Jul 2020 -10 18°S -20 -30 36°S 40 120°W 60°E 120°E 60°W 180° -150 -100 -50 50 100 150

ENSO Index based on RO water vapor

- ENSO MEI index shown to right
- MEI.v2 uses 5 variables
 - Sea level pressure (SLP),
 - Sea surface temperature (SST),
 - Surface zonal winds (U),
 - Surface meridional winds (V),
 - Outgoing Longwave Radiation (OLR))
- Water vapor and precipitation follow the warmest SSTs
- Can see the water vapor migration with GNSS RO
- Use that migration to create new ENSO index or add it to a multivariable index like MEI

	YEAR	DJ	JF	FM	MA	MA	MJ	JJ	JA	AS	SO	Connen	D ATMOSPHERIC POR
DSMIC-2 COSMIC CHAMP	2000	-1.3	-1.3	-1.4	-0.9	-1	-1.1	-0.6	-0.1	-0.4	-0.6	- ATIONAL	
	2001	-0.8	-0.9	-0.8	-0.6	-0.6	-0.7	0	0.3	-0.1	-0.2	-(US DED	MARER
	2002	0.1	-0.3	-0.2	-0.4	-0.1	0.4	0.4	1	0.8	0.8	0.8	0.9
	2003	0.8	0.6	0.5	-0.1	-0.6	- <mark>0.1</mark>	0	0	0.1	0.3	0.3	0.1
	2004	0.2	0	-0.4	-0.2	-0.4	-0.3	0.4	0.7	0.5	0.3	0.5	0.5
	2005	0.1	0.6	0.8	0.1	0.2	0.2	0	0	0	-0.7	-0.7	-0.7
	2006	-0.7	-0.5	-0.6	-0.8	-0.4	-0.2	0.1	0.6	0.6	0.7	0.9	0.6
	2007	0.6	0.4	-0.2	-0.4	-0.4	-0.9	-0.8	-0.9	-1.1	-1.1	-1.1	-1.2
	2008	-1.1	-1.3	-1.5	-1.1	-1	-0.9	-0.9	-1.1	-1.1	-1.1	-1	-1
	2009	-1	-0.8	-0.9	-0.8	-0.7	-0.1	0.5	0.5	0.4	0.6	1.1	1
	YEAR	DJ	JF	FM	MA	MA	MJ	JJ	JA	AS	SO	ON	ND
	2010	0.9	1.3	1.3	0.5	-0.2	-1.3	-2.4	-2.4	-2.3	-2.2	-2	-1.9
	2011	-1.8	-1.6	-1.8	-1.7	-1.3	-1.1	-0.9	-0.9	-1.2	-1.4	-1.2	-1.2
	2012	-1.1	-0.7	-0.6	-0.4	-0.3	-0.3	0.3	-0.1	-0.3	-0.2	-0.1	-0.1
	2013	0	-0.1	-0.1	-0.4	-0.7	-1.2	-0.8	-0.5	-0.4	-0.2	-0.2	-0.3
	2014	-0.5	-0.4	-0.1	-0.2	-0.2	0	0.3	0.2	-0.1	0.1	0.3	0.3
	2015	0.2	0.1	0.1	0.4	1	1.9	1.7	1.9	2.2	2.1	1.9	1.9
	2016	1.9	1.8	1.3	1.3	1.3	0.4	-0.5	-0.3	-0.3	-0.6	-0.5	-0.3
	2017	-0.4	-0.4	-0.6	-0.2	0.2	-0.3	-0.7	-0.8	-0.8	-0.6	-0.6	-0.7
	2018	-0.8	-0.7	-0.8	-1.3	-0.9	-0.5	-0.2	0.4	0.5	0.4	0.3	0.1
	2019	0.1	0.5	0.8	0.3	0.3	0.4	0.2	0.3	0.2	0.3	0.5	0.4
	YEAR	DJ	JF	FM	MA	MA	MJ	JJ	JA	AS	SO	ON	ND
	2020	0.3	0.3	0.2	-0.1	-0.2	-0.7	-1	-1	-1.2	-1.2	-1.1	-1.2
<u>с</u> ,	2021	-1.2	-0.9	-0.8									

_{ey} La Nina El Nino

PLANETIO COSMIC-2: Two years of Nov-Dec-Jan

- OUT OF COMMENCE OF COMMENCE
- Centroid of high free troposphere water vapor shifts west during La Nina and east as ENSO index becomes increasingly positive

- Based on centroid of high free troposphere PWV in East Indian and Pacific Oceans
- Refining unique criteria for ENSO definition

4/12/2021

Comparing Humidity: COSMIC-2 Direct-retrieval & Sondes

- RS-41 sondes measure humidity quite accurately as demonstrated by comparisons with
 GRUAN-processed RS92 sondes
- Using NPROVS to identify and compare collocated RS41 sondes with COSMIC-2 profiles
- Comparing RO specific humidity (Direct retrievals) with the collocated sondes
- Early results presented here
 - 4200 collocation over 20 days
 - Need more collocations to reduce sampling noise

PLANETIQ 5 RO Collocations with one sonde from Jan 1, 2021

- The very close RO profile matches sonde very closely down to 875 hPa
- There is a strong latitudinal gradient
- RO profile 80 km south and 3 hours earlier is similar to the sonde profile
- RO profiles north of the sonde see much drier air in the lower troposphere
- RO-sonde difference depends more strongly on latitude separation than total distance or time separation

PLANETIO Histograms of specific humidity differences

- Stdev's larger than stdev's estimated from quartiles => **Outliers** vs Gaussian
 - More horizontal humidity structure between 300 and 800 hPa
 - At 500 hPa, variance is 3x the variance based on quartiles, due to 6% "outliers" relative to a Gaussian
- Develop more sophisticated collocation criteria including horizontal gradients?

4/12/2021

Preliminary Summary

- Differences from RO errors, RS41 errors, and collocation separations, as well as horizontal averaging of the RO vs. sonde point measurements.
- Cyan curve is estimated stdev of RO Direct profiles from Kursinski & Gebhardt 2014
- Pink curve is Vaisala's accuracy spec = 4%RH
- Red stdev curve is ~RSS of $\sigma_{sonde} \& \sigma_{RO}$ (good)
- $\sigma_{RO} \leq \sigma_{sonde}$ from 500 hPa to 850 hPa?
- Small negative bias:
- Small negative bias: Kursinski/Gebhardt (2014) est. bias < 0.03 g/kg @346 hPa
 - Bias vs RS41 is about -0.03 g/kg at 250 & 300 hPa
 - Bias magnitude increases at higher pressure
 - Slight RO error due to non-ideal gas behavior?
 - At 850 hPa, super refraction causes negative RO bias?

PLANETIO Bias in Relative Humidity

- Similar magnitude of bias between RS41 v. GRUAN-processed RS92 sondes
 - Magnitude and sign of estimated sonde-to-sonde bias varies a bit with location
 - Lauder, New Zealand v. Lindenberg, Germany v. Payerne, Switzerland v. Graciosa, Azores
- Green line is measured **RH** bias (RO-RS41) between Direct retrieved RO water vapor profiles and RS41
- Negative RS92 GDP-RS41 and C2DR RS41 biases could be explained by RS41 being biased a bit high
- Will add 1DVar

PLANETI Toward Climate-Quality RO Water Vapor

Quick humidity histogram comparison update

Comparisons between errordeconvolved GNSS RO specific humidity histograms and those from

- (Re) analyses
- AIRS
- Climate models

Specific Humidity (g/kg)

(Re)analysis and climate model comparison

IROWG-8: Kursinski, Kursinski, Sun, Reale and Pettey

ND ATMOSP

(Re)analysis and climate model comparison

• ERA5 better than ERAI at all 3 levels

4/12/2021

IROWG-8: Kursinski, Kursinski, Sun, Reale and Pettey

ATMOSA

(Re)analysis and climate model comparison

- ERA5 better than ERAI at all 3 levels
- AIRS v7 better in lower troposphere than AIRSv6 but worse in upper troposphere

(Re)analysis and climate model comparison

- ERA5 better than ERAI at all 3 levels
- AIRS v7 better in lower troposphere than AIRSv6 but worse in upper troposphere
- CMIP6 are generally better than CMIP5
- Challenging to improve at all 3 levels

(Re)analysis and climate model comparison

- ERA5 better than ERAI at all 3 levels
- AIRS v7 better in lower troposphere than AIRSv6 but worse in upper troposphere
- CMIP6 are generally better than CMIP5
- Challenging to improve at all 3 levels
- None get within $\Delta ENSO$

4/12/2021

PLANETI HadGEM3's remarkable performance

COMPACT AND A CO

HadGEM3 scores as well as ERA5!

- Surprise: 6 hour HadGEM3 AMIP 2007 specific humidity histograms score as close to GPS RO deconvolved histograms as do the 1 hour ERA5 reanalyses for 2007.
- HadGEM3 P LL 85Lev 2.5 (mb) 6hr 346 19.0% 19.0% 547 17.6% 18.2% 0.5 725 14.8% 14.0% 17.1% 17.1% Avg 0.7
- ERA5 has assimilated an enormous number of observations,
- HadGEM3 is a free running climate model using specified SSTs Questions:
 - How can HadGEM3 match ERA5 performance without having assimilated any atmospheric observations?
 - Is the MOHC model really that good?
 - Are present water vapor observations not providing much constraints?

