Impact of Spire and COSMIC-2 data in the ECMWF and Met Office NWP systems

Katrin Lonitz^{ECMWF}, Neill Bowler^{MetOffice} and Sean Healy^{ECMWF}

katrin.lonitz@ecmwf.int

IROWG-8

7 April 2021

Ongoing ESA Study (end July 2021): Contract No. 4000131086/20/NL/FF/an

Parties involved in this study: ECMWF, Met Office and EUMETSAT

© ECMWF April 6, 2021

Setup and Data

How is Spire and COSMIC-2 assimilated?

	Met Office	ECMWF
Bending angle operator	1D	2D
Observation error model	uses height, satellite ID and average temperature below 20km as the predictors	global bending angle error statistic
Bias correction	no	
Usage of data	Assimilated from surface to 60km ^{MO} /50km ^{ECMWF} impact height	
Model	N320 (40 km in mid-lat)	IFS CY47R1, Tco399 (25 km spacing)
Data assimilation cycle	6h	12h
Experiment period	Jan 1 – March 31, 2020	

Temporal distribution @ ECMWF Jan-Feb-Mar 2020

Spatial distribution of data

3074 profiles

2658 profiles

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Spatial distribution of data

Jan, Feb, March 2020

(gridded to 2.5 x 2.5 lat/lon)

Experiments

- CTL: Operational data available for the period, including the GNSS-RO data
 (e.g. ECMWF:3*Metop GRAS, KOMPSAT-5, FY-3C GNOS, TSX,TND =3000 profiles per day)
- NoRO: CTL minus all GNSS-RO data
- COSMIC2: CTL + COSMIC-2 data (4000 profiles in ± 40 degrees latitude band)
- Spire: CTL + Spire (Spire > 5000 profiles globally distributed)*
- Spire + COSMIC2: CTL + Spire + COSMIC-2

Results

Fits to radiosonde temperature observations

Normalised standard deviation in FG departure

Tropics, MetOffice and ECMWF

Fits to tropical observations@ECMWF

Normalised standard deviation in FG departure

22 METEOSAT-8 SEVIRI WV7.3 (\cdot) (\cdot) \mathbf{G} 21 METEOSAT-8 SEVIRI WV6.2 20 q METEOSAT-11 SEVIRI WV7.3 19 18 METEOSAT-11 SEVIRI WV6.2 Channel number 15 HIMAWARI-8 AHI WV7.3 14 13 HIMAWARI-8 AHI WV6.9 12 HIMAWARI-8 AHI WV6.2 11 GOES-16 ABI WV7.3 10 9 GOES-16 ABI WV6.9 8 GOES-16 ABI WV6.2 **GOES-15 IMAGER WV** 96 97 98 99 100 10 98 99 100 97 101 Background std. dev. [%, normalised] Background std. dev. [%, normalised] SPIRE SPIRE COSMIC2 COSMIC2 SPIRE+COSMIC2 SPIRE+COSMIC2 10 100% =noRO 100% =noRO

ATMS

Geostationary radiance

Fits to aeolus wind@ECMWF

Normalised standard deviation in FG departure

Medium Range Weather Forecast Scores@ECMWF

Normalised change of std. dev

Summary

Summary

•Good impact on observing system and forecast scores from both Spire and COSMIC-2

	Met Office	ECMWF	
Similarities	Largest impact seen in higher levels		
	improved fits to temperature	and humidity sensitive observation	
	COSMIC-2 has a bigger impact	on humidity in the tropics than Spire	
Differences	Improved scores in vector wind	improved fits and scores in wind	
	not evident	biggest impact of Spire in SH	

a bit more....

Ensemble of Data Assimilation experiments

Ongoing work @ ECMWF

Why?

To estimate how the impact of GNSS-RO measurements scales as a function of observation number in the ECMWF numerical weather prediction system

Background:

Theoretical short-range forecast error statistics can be estimated from the spread of ensemble members

Aim:

Test if the addition of real GNSS-RO data reduces the EDA spread as discussed in

Backup

Vertical data usage of Spire and COSMIC-2

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

EDA spread versus FC error (global)

