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Significance of this study

* Saharan dust outbreaks frequently propagate westward over the Atlantic Ocean;
accurate quantification of the dust aerosol scattering and absorption effect on the
surface radiative fluxes (SRF) 1s fundamental to understanding critical climate

feedbacks.

* Accurate independent shipboard measurements in the tropical Atlantic Ocean area
provide an independent representation of the atmosphere and ocean that can be used to
investigate the influence of the dust aerosols on skin Sea-Surface Temperature
(SSTskin) variability.

* This study includes the RRTMG-simulated surface shortwave and net longwave
downwelling radiative changes due to dust and calculates the corresponding thermal
skin layer temperature changes.
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A massive dust plume from the Sahara Desert reaches far out over the Atlantic Ocean from the NASA-NOAA Suomi
NPP Earth-observing satellite on June 13, 2020. (Image credit: NASA Worldview at
https://www.nasa.gov/feature/goddard/2020/nasa-observes-large-saharan-dust-plume-over-atlantic-ocean)
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"True-color" composite image of the Saharan Dust plume captured by the VIIRS instrument aboard NASA/NOAA’s Suomi NPP
satellite on June 24, 2020. The bright streaks seen at regular intervals are due to sun glint off of the ocean surface. (Image
credit: https://www.nasa.gov/feature/goddard/2020/nasa-noaa-s-suomi-npp-satellite-analyzes-saharan-dust-aerosol-blanket)
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Aerosols and Ocean Science Expeditions (AEROSE) tracks
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Nalli, N.R., Joseph, E., Morris, V.R., Barnet, C.D., Wolf, WW., Wolfe, D., Minnett, P.J., Szczodrak, M., Izaguirre, M.A., Lumpkin, R., Xie, H., Smirnov, A., King, T.S., & Wei, J. (2011).
Multiyear Observations of the Tropical Atlantic Atmosphere: Multidisciplinary Applications of the NOAA Aerosols and Ocean Science Expeditions. Bulletin of the American
Meteorological Society, 92, 765-789
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Shipboard SST dataset

The M-AERI is an accurate, self-calibrating, Fourier
transform IR spectroradiometer that measures emission
spectra from the sea and atmosphere (Minnett et al. 2001).

NOAA Ship R.H.B at Florida. Mar 2 2018 M-AERI is calibrated in the laboratory before and aﬁer
each deployment using an external validation procedure.
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Shipboard Radiosonde dataset

N\

CRUISES NUMBER OF \ START END DAYS OF
RADIOSONDES DATA

2007 96 2007-05-07 2007-05-28 22
2008 74 2008-04-29 2008-05-19 21
2009 78 2009-07-11 2009-08-11 31
2011 102 2011-07-21 2011-08-20 31

2013 ILegl 111 2013-01-09 2013-02-13 36

2013 Leg 2 97 2013-11-11 2013-12-08 28
2015 92 2015-11-17 2015-12-14 28
2019 101 2019-02-24 2019-03-29 34
Total 751 2007-05-07 2019-03-29 231

N——

Launching RS92 radiosonde 30 min prior to satellite

sounder overpass. (Nalli et al. 2011)
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Shipboard Radiosonde measurements
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MERRA-2 reanalysis value

NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) three-dimensional
aerosol dust concentrations
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Gelaro, Ronald, et al. "The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)." Journal of Climate 30.14 (2017):
5419-5454.
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Significance of this study

* Accurate quantification of the surface radiative fluxes (SRF) 1s fundamental to
understanding critical climate feedbacks and the Earth's surface energy budget.

* Current global SRF datasets are calculated using radiative transfer models with
inputs from satellite observations and reanalysis fields.

* Oceanic SRF can be improved under the abnormal atmospheric cases such as
under aerosol effect by combining independent observations.

* By exploiting large sets of measurements from many ship campaigns in
conjunction with reanalysis products, this study characterizes the sensitivity of the
SRF to the Saharan dust acrosols using radiative transfer models.
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Introduction of this study

* The Rapid Radiative Transfer Model for General Circulation Models
Applications (RRTMG) was used

* The field data are measurements of the M-AERI SST . , and vertical

atmospheric temperature and water vapor radiosonde profiles. The aerosol
dust concentrations from the NASA MERRA-2.

Aerosol optical depth of each layer Atmospheric layer thickness

a— —

7= ) x. Xb o (RH, X)X 87

| \
MERRA-2 dust mixing ratio
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TABLE 1. Aerosol optical properties by species at A = 0.55 um and as a function of relative humidity (RH).¢

Mass Extinction Coefficient¢ (Bey) [m? ¢~ '] Single Scattering Albedo’ () Asymmetry Parameter® (g)
Species RH = 0% = 80% RH = 95% RH = 0% 80% RH=95% RH=0% RH= S()’,ii RH = 95%

Dust Bin 1? 2.02 2.02 2.02 0.96 0.96 0.71 0.7 0.71
Dust Bin 2° 0.64 0.64 0.64 0.92 0.92 0.75 775 0.75
Dust Bin 3? 0.33 0.33 0.89 0.89 0.80 0.80 0.80
Dust Bin 4? 0.17 0.17 0.83 0.83 0.8 0.84 0.84
Dust Bin 5° 0.08 0.08 0.77 0.77 .87 0.87 0.87
Sea Salt Bin 1€ 4.54 25.98 1.00 0.20 0.50 0.69
Sea Salt Bin 2¢ 10.01 24.( 0.70 0.78 0.79
Sea Salt Bin 3¢ 2.04 0.71 0.78 0.83
Sea Salt Bin 4¢ 0.86 0.77 0.83 0.85
Sea Salt Bin 5¢ 0.10 0.30 0.81 0.86 0.87
Hydrophobic BCY/  9.28 0.33 0.33 0.33
Hydrophilic BCY  9.28 0.25 0.38 0.33 0.40 0.50

w
Ref:
Thorsen, T. J., Ferrare, R. A., Kato, S., &
/5 Winker, D. M. (2020). Aerosol direct radiative
&= SYeo, effect sensitivity analysis. Journal of

,- Climate, 33(14), 6119-6139.
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; Dust shortwave effects 4 Dust longwave effects
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Left: RRTMG calculated Saharan dust shortwave effects at sea surface with AOD at 550 nm for the
radiosonde deployment stations. Right: RRTMG calculated Saharan dust longwave effects. The colors
indicate the deployment year.

PIRATA-24/TAV Meeting



PART THREE

SST . response to dust radiative effects

skin



1) ‘ UNIVERSITY Part 3 SST . response to dust radiative effects
OF MIAMI

SST e SSTfnd (K)

. 0 0.5 1.0 1.5 2.0 25 30

10pum - N
1mm - /\>_
A schematic drawing of ocean near-surface
b vertical temperature profile during nighttime
i1m - < . . o7 . .
A and daytime. Variability exists in both the
c
S L ssTint: temperature and depth scales. Taken from:
5 b 7 V .
5 < + S ame aidhe e https.://www.ghrsst.org/ghrsst-data-services/
g‘ temperature products/
= %> SSTsubskin :
-
-%" <G> SSTdepth:
10 m- + SSTfnd: sea surface foundation

temperature

PIRATA-24/TAV Meeting



Part 3 SST . response to dust radiative effects

W Jii

T T T T T T T
. Explorer

22 Mar 2002 512 ré\ ’g
410 ~ ~— ~—
< 2r 1. ‘o 5 & 5 “
P : :
/ 14 . ’
Or—°-=- etNTA 22 B
05 R SR (N [N S, | i 0
1.2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 -§ .
Local time of day (hr) _
4 6 8
wind Speed (ms”)
The diurnal heating Signal (SSTskin — TTSG) in blue. Upper ocean temperature proﬁles colored by
Insolation is background, wind speed the green line (right wind speed at the time of the profile (4). A
axis), Simulations of Fairall et al., (1996) are the gray smoothed subset showing the clear wind-speed
line, and Gentemann et al., (2009) are the black line. dependence (B). From Gentemann et al., (2009).

Gentemann, C. L., Minnett, P. J., & Ward, B. (2009). Profiles of ocean surface heating (POSH): A new model of upper ocean diurnal
warming. Journal of Geophysical Research: Oceans, 114(C7).
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Diurnal SSTskm model by Akella et al. 2017, ECMWF 2016; Gentemann and Akella 2018; Takaya et al. 2010;
Zeng and Beljaars 2005:

SSTsin = SSTpng — ASST, + ASSTy,(2) (1)

where SSTf, 4, ASST4 and ASSTy, are OSTIA SSTf,4, diurnal warming and cool-skin

temperature changes respectively. The cool skin effect, the temperature difference between
SSTyin and SSTf,; can be expressed as:

1) |
SSTskin — SSTfnd = —k(Qc) (2)

wCw Kw
where p,, 1s the water density, c,, 1s the volumetric heat capacity, k,, is the molecular thermal
conductivity of water and § is the skin layer thickness. Q. is the net heat flux through the sea
surface:

(3)
T Igtent heat flux and net long wave
radiation at the surface. SWS,; is the net solar ra¥jation af the surface, f; is the fraction of the
surface-absorbed solar radiation within the near suNace ¢cean, given by Fairall et al. (1996).

From RRTMG simulations
With and without dust
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The diurnal warming calculations are based on Takaya et al. (2010) and can be expressed as:

0(SST_s~SSTfna) _ Qw+Ry—R(—d) _ (v+Dkuy
at  dpgcyv/(v+1)  dee(d/L)

(SST_5 — SSTspna) (4)

where SST_; 1s the temperature below the cool skin layer, d is the depth of the diurnal warm
layer, which is set as 3 m, v is the profile shape and it is set as 0.3, u,,, 1s the water friction
velocity, ¢.(d/L) is the stability function and L is the Obukhov length; R(—d) is the solar
radiation absorbed at depth -d. The net heat flux at the surface available to heat the warm
layer, Q,,, is given by:

From RRTMG simulations -— Hs — H, (5)

With and without dUStNote the SW,%1s net short-wave radiation absorbed’in the warm layer, SW,)>. = SW

net
SWpen, Where SWpy 1s the penetrating short-wave radiation that can be obtained from the
three-band absorption profile of Soloviev and Vershinsky (1982) the coefficients a; and b; can

be obtained from Zeng and Beljaars (2005).
SWpeny = SWitee Xisy a; exp (—dby) (6)

Equation (4) has been integrated in time to derive the warm layer effect; during daytime, the
warm layer effect (T_,; = Tfnd) from Equation (4) and the cool layer effect (Tsy;, — Trpq ) from
Equation (2) have been added together to derive T,
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SSTskm change due to dust
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Left: Calculated daytime SST . changes due to dust with AOD at 550 nm, the SST . changes are large
with high aerosol concentrations. Right: Calculated nighttime SST . changes.
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Conclusions:

*By exploiting large sets of measurements from many ship campaigns in conjunction with
reanalysis products, this study characterizes the sensitivity of the SRF and SSTskin to the
Saharan dust aerosols using models of the atmospheric radiative transfer and thermal skin
effect.

*The dust outbreaks can decrease the surface shortwave radiation up to 190 W/m? and
increase the surface longwave radiation by up to 14W/m?.

*SSTskin response to the abnormal surface radiative fluxes can range from a net cooling to
a tiny warming: -0.24K to 0.06K.

*Greater physical insight into the radiative transfer through an aerosol-burdened atmosphere
will substantially improve the predictive capabilities of weather and climate studies on a
regional basis.
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Future Work:

* Since reanalyses (e.g., MERRA-2) capture detailed aerosol variability, how does that impact
brightness temperature simulation? And in-turn, does that impact meteorological
assimilation?

* We also recommend that more detailed determination of the dust effects on SRF requires
better knowledge of dust radiative properties and vertical distribution of aerosol layers
derived, for example, from ship-based lidar or from CALIPSO satellite.

* The impact of different kinds of aerosol layers should be further explored.

* Such approaches as developed here can be applied to infrared satellite radiometers such as
VIIRS on the Suomi-NPP and NOAA-20, SLSTR on Copernicus Sentinel-3 A/B satellites to
improve the SSTskin retrieval.
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