

# Assessment of New Radio Occultation Measurements at the Global Modeling and Assimilation Office

Will McCarty<sup>1,2,3</sup>, Ricardo Todling<sup>1,2</sup>, Nikki Privé<sup>1,4</sup>, Mohar Chattopadhyay<sup>1,5</sup>, Gary Partyka<sup>1,5</sup>, and Ronald Gelaro<sup>1,2</sup>

<sup>1</sup>Global Modeling and Assimilation Office <sup>2</sup>NASA Commercial SmallSat Data Acquisition (CSDA) Program <sup>2</sup>NASA Goddard Space Flight Center <sup>4</sup>GESTAR, Morgan State University <sup>5</sup>Science Systems and Applications, Inc.

8th International Radio Occultation Working Group Meeting 8 April 2021





### **Radio Occultation Assimilation at the GMAO**

Like most global centers, GNSS radio occultation measurements have been assimilated routinely at the Global Modeling and Assimilation Office for more than a decade

- Near-realtime implementation in the GMAO Forward Processing (FP) system
- Assimilation into reanalysis since MERRA-2 (Gelaro et al. 2017, McCarty et al. 2016)

GMAO systems are built upon the Goddard Earth Observing System (GEOS) atmospheric data assimilation system

- GEOS global earth prediction model in atmospheric configuration
  - Cubed sphere dynamics, 0.01 hPa model top, 72 levels
- Gridpoint Statistical Interpolation (GSI) assimilation procedure, codeveloped with NOAA/NCEP/EMC
  - Bending angle assimilated to 60 km
- This talk aims to illustrate three substantial updates
  - Implementation of updated observation operator
  - Implementation of COSMIC-2
- Assessment of Spire bending angle measurements acquired via the NASA Commercial Smallsat Data Acquisition (CSDA) Program





# **Update of the Bending Angle Observation Operator**

The vertical interpolation scheme in the GSI was updated to handle coarse integrations at the model layer interfaces versus the layer mid-points

- This issue was determined to be GMAO-centric due to the coarse spacing of the 72 vertical levels in the upper-troposphere
- Resulted in a negative bias in the background departures, particularly between 9 and 10 km

This issue was diagnosed by identifying discrepancies between the GSI and the RO SAF forward operators

- Diagnoses observing system simulated experiments (OSSEs) investigating saturation
- An example of the OSSE transitioning to production/real data systems
- Held up COSMIC-2 implementation, as the bias acted as a "blow torch" in the tropical upper-troposphere

The issue mitigates itself with better vertical resolution

 Fix will be re-assessed with more model levels upgrade anticipated in Q3 2021







## **COSMIC-2** Testing

Once the H(x) was improved, GMAO began testing COSMIC-2

- Data was seen to be generally consistent w/ heritage RO data
- QC decisions inherited from NOAA GSI development

Future work may consider different lower tropospheric cut-off

Data volume increase substantial in the tropics (as expected)

Largest impacts seen in tropics





## **Implementation of COSMIC-2**

### CTL: Candidate System EXP: CTL + COSMIC-2

Largest forecast improvements seen in the Tropics

- Temperature, winds largely improved
- Slight degradation in 100 hPa geopotential height RMS

Testing had a discrepancy in CrIS implementation that may have indirect feedbacks

Degradation not seen in full FP implementation

| Northern Hemisphere    |                   |                                                                                                                  |                 |                       | Southern Hemisphere |              |                                          |                 | Tropics           |           |         |  |
|------------------------|-------------------|------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|---------------------|--------------|------------------------------------------|-----------------|-------------------|-----------|---------|--|
| Variable               | Pressure<br>Level | COR                                                                                                              | RMS             | Variable              | Pressure<br>Level   | COR          | RMS                                      | Variable        | Pressure<br>Level | COR       | RMS     |  |
| Forecast               | Day               | 12345                                                                                                            | 12345           | Forecast              | Day                 | 12345        | 12345                                    | Forecast        | Day               | 12345     | 12345   |  |
| Geopotential<br>Height | 10                |                                                                                                                  |                 |                       | 10                  |              |                                          |                 | 10                |           |         |  |
|                        | 70                |                                                                                                                  |                 |                       | 70                  |              |                                          |                 | 70                |           |         |  |
|                        | 100               | and the second | 10.A0000000     | Geopotential          | 100                 |              |                                          | Coonstantial    | 100               |           |         |  |
|                        | 250               |                                                                                                                  |                 | Height                | 250                 |              | A                                        | Height          | 250               |           |         |  |
|                        | 500               |                                                                                                                  |                 | neight                | 500                 |              | <b>A</b>                                 | licight         | 500               |           | *****   |  |
|                        | 700               |                                                                                                                  | 8888            |                       | 700                 |              | 100 III III III III III III III III III  |                 | 700               |           |         |  |
|                        | 850               |                                                                                                                  |                 |                       | 850                 |              |                                          |                 | 850               |           |         |  |
| Temperature            | 10                |                                                                                                                  |                 |                       | 10                  |              |                                          |                 | 10                |           |         |  |
|                        | 70                |                                                                                                                  |                 |                       | 70                  |              |                                          |                 | 70                |           |         |  |
|                        | 100               |                                                                                                                  |                 |                       | 100                 |              |                                          |                 | 100               |           |         |  |
|                        | 250               | VerVVerse                                                                                                        | 100000000       | Temperature           | 250                 |              |                                          | Temperature     | 250               |           | ∧ 🗱 🐼   |  |
|                        | 500               | 8 AA                                                                                                             | ⊗ ∆∆            | 1.8                   | 500                 | Δ            |                                          | 122             | 500               | AAAAAA    | Δ       |  |
|                        | 700               | 8 A8                                                                                                             |                 |                       | 700                 | 22           | 38 I I I I I I I I I I I I I I I I I I I |                 | 700               |           |         |  |
|                        | 850               |                                                                                                                  |                 |                       | 850                 |              |                                          |                 | 850               | 8         |         |  |
|                        | 10                |                                                                                                                  |                 |                       | 10                  |              |                                          |                 | 10                |           |         |  |
|                        | 70                | 1. 1997-1997-1977-1977-1977-1977-1977-1977                                                                       |                 |                       | 70                  |              |                                          |                 | 70                |           |         |  |
| U-Wind                 | 100               | <u>∧</u> ⊗ ⊗                                                                                                     |                 |                       | 100                 |              |                                          |                 | 100               |           |         |  |
|                        | 250               |                                                                                                                  | 323             | U-Wind                | 250                 |              |                                          | U-Wind          | 250               |           |         |  |
|                        | 500               |                                                                                                                  |                 |                       | 500                 | 22           | 38 I I I I I I I I I I I I I I I I I I I |                 | 500               |           |         |  |
|                        | 700               | Δ                                                                                                                | Δ               |                       | 700                 | ×            |                                          |                 | 700               | ******    |         |  |
|                        | 850               |                                                                                                                  |                 |                       | 850                 |              |                                          |                 | 850               | AAAAAAAAA | AAAAAAA |  |
| V-Wind                 | 10                |                                                                                                                  |                 |                       | 10                  |              |                                          |                 | 10                |           |         |  |
|                        | 70                |                                                                                                                  |                 |                       | 70                  |              |                                          |                 | 70                |           |         |  |
|                        | 100               | A\$\$ \$\$\$\$                                                                                                   | Δ 333           |                       | 100                 | SASA -       | 18 <b>4</b> 388 8                        |                 | 100               | AAA       |         |  |
|                        | 250               |                                                                                                                  |                 | V-Wind                | 250                 |              |                                          | V-Wind          | 250               |           |         |  |
|                        | 500               | AAA 8                                                                                                            |                 |                       | 500                 | **           | Δ                                        |                 | 500               |           |         |  |
|                        | 700               | <u>∆≋ 888</u>                                                                                                    | AA 333          |                       | 700                 | *            |                                          |                 | 700               | *******   |         |  |
|                        | 850               |                                                                                                                  |                 |                       | 850                 | 2            | 8                                        |                 | 850               | *******   |         |  |
|                        |                   |                                                                                                                  | ▲ far better, s | significant (99.99% c | onfidence)          | 🕴 slightly v | vorse, significant (                     | 95% confidence) |                   |           |         |  |

- △ better, significant (99% confidence)
  ※ slightly better, significant (95% confidence)
- ▽ worse, significant (99% confidence)
- slightly better, significant (95% confidence) 🔻 far worse, significant (99.99% confidence)
- no significant difference

C

### Summary of Implementation – FSOI

The most recent Forward Processing upgrade on 25 February 2021

 COSMIC-2, Ozone Sensitive IR, CrIS Full Spectral Resolution + Correlated Errors, MHS All-Sky, AMSR-2 All-Sky, Metop-C AMSU-A & GRAS

Looking at FSOI...

- RO jumped two positions globally
- RO jumped to 3<sup>rd</sup> overall, just below AMVs and RAOBs, in the Tropics

#### Total FSOI Ranking Change 1 Dec 2020 - 31 Jan 2021



#### Total FSOI Ranking Change 1 Dec 2020 - 31 Jan 2021







## **Assessment of Spire Radio Occultation Data**

COSMIC-2 testing corresponded to a period that overlapped w/ CSDA Spire holdings

- Dec 2019-Jan 2020
- Spire-produced bending angle bufr profiles

Spire assimilation methodology

- GPS-derived to 5 km; other (GLONASS, GALILEO, QZSS) to 9 km
- Error modeling consistent w/ COSMIC-1

Due to latency, near-realtime implementation of Spire products infeasible

 Considering potential for implementation in future reanalyses







### **Spire Forecast Scorecard**

CTL: Candidate (including COSMIC-2)

EXP: CTL + Spire

Largest forecast improvements seen in Southern Hemispehre

 Temperature, winds improved across the board

Improvements in N. Hem less apparent

| Northern Hemisphere |                   |            | Southern Hemisphere |                        |                   |          |            |
|---------------------|-------------------|------------|---------------------|------------------------|-------------------|----------|------------|
| Variable            | Pressure<br>Level | COR        | RMS                 | Variable               | Pressure<br>Level | COR      | RMS        |
| Forecast Day        |                   | 12345      | 12345               | Forecast               | Day               | 12345    | 12345      |
|                     | 10                |            |                     |                        | 10                |          |            |
|                     | 70                |            |                     | Geopotential<br>Height | 70                |          |            |
| Connetontial        | 100               |            |                     |                        | 100               |          |            |
| Hoight              | 250               |            |                     |                        | 250               |          |            |
| neight              | 500               |            |                     |                        | 500               | AAAAAAA  | AAAAAAA/   |
|                     | 700               |            |                     |                        | 700               |          |            |
|                     | 850               | 8          |                     |                        | 850               |          |            |
|                     | 10                |            |                     | Temperature            | 10                |          |            |
|                     | 70                |            |                     |                        | 70                |          |            |
|                     | 100               |            |                     |                        | 100               |          |            |
| emperature          | 250               | <u>∆∞</u>  |                     |                        | 250               |          |            |
|                     | 500               |            |                     |                        | 500               |          |            |
|                     | 700               |            |                     |                        | 700               |          |            |
|                     | 850               |            |                     |                        | 850               |          |            |
|                     | 10                |            |                     |                        | 10                |          |            |
|                     | 70                |            |                     |                        | 70                |          |            |
|                     | 100               |            |                     | U-Wind                 | 100               |          |            |
| U-Wind              | 250               |            |                     |                        | 250               |          |            |
|                     | 500               |            |                     |                        | 500               |          |            |
|                     | 700               | <u>8</u> ∆ |                     |                        | 700               |          |            |
|                     | 850               |            |                     |                        | 850               |          | :ss∆ss∆sss |
| V-Wind              | 10                |            |                     |                        | 10                |          |            |
|                     | 70                |            |                     |                        | 70                |          |            |
|                     | 100               |            |                     |                        | 100               |          |            |
|                     | 250               | 8          |                     | V-Wind                 | 250               |          |            |
|                     | 500               | A8         | A\$                 |                        | 500               |          |            |
|                     | 700               |            |                     |                        | 700               | <u> </u> |            |
|                     | 850               | 8          |                     |                        | 850               |          | SSAAAASS   |

| Tropics      |                   |        |                  |  |  |
|--------------|-------------------|--------|------------------|--|--|
| Variable     | Pressure<br>Level | COR    | RMS              |  |  |
| Forecast     | Day               | 12345  | 12345            |  |  |
|              | 10                |        |                  |  |  |
|              | 70                |        | 1                |  |  |
| Coopstantial | 100               |        | AAAAAAAA         |  |  |
| Height       | 250               |        |                  |  |  |
| neight       | 500               |        |                  |  |  |
|              | 700               |        |                  |  |  |
|              | 850               | 8      |                  |  |  |
|              | 10                |        |                  |  |  |
|              | 70                |        |                  |  |  |
|              | 100               |        |                  |  |  |
| Temperature  | 250               | AA%    |                  |  |  |
|              | 500               |        |                  |  |  |
|              | 700               |        |                  |  |  |
|              | 850               |        | - V              |  |  |
|              | 10                |        |                  |  |  |
|              | 70                |        |                  |  |  |
|              | 100               | ASA SI | ASA A            |  |  |
| U-Wind       | 250               |        |                  |  |  |
|              | 500               |        |                  |  |  |
|              | 700               |        |                  |  |  |
|              | 850               |        | 8 8              |  |  |
|              | 10                |        |                  |  |  |
|              | 70                |        |                  |  |  |
|              | 100               |        | <u>∆</u> ⊗       |  |  |
| V-Wind       | 250               |        |                  |  |  |
|              | 500               |        | AA:0 00          |  |  |
|              | 700               |        | $\otimes \Delta$ |  |  |
|              | 850               |        |                  |  |  |

🛦 far better, significant (99.99% confidence) 🛛 🖹 slightly worse, significant (95% confidence)

- ightarrow better, significant (99% confidence) ightarrow worse, significant (99% confidence)
- 🔅 slightly better, significant (95% confidence) 🔻 far worse, significant (99.99% confidence)

no significant difference

Tropical Improvement seen, even on top of COSMIC-2



# **Spire FSOI**



FSOI showns further enhancement of RO as a global observing system by including Spire data

- COSMIC-2 moved GNSS-RO to 3rd overall in the Tropics (earlier slide)
- Spire data fills out global contribution of observing system, moves to 3<sup>rd</sup> overall globally
- Breakdown of FSOI by RO observing system (below)
  - Total FSOI scales close to observation count
  - Per-observation, the data is similar to other observing systems







Global Modeling and Assimilation Office gmao.gsfc.nasa.gov

G





The GMAO continues to investigate expansion of their RO observing system

- PAZ, Kompsat-5, GeoOptics (via NOAA CWDP) testing about to start
- Strong desire to fill gap in global observing system between COSMIC and COSMIC-2 for reanalysis
- Reprocessed data
  - Current observation stream taken from operational (Forward Processing) data streams
  - Desirable for next reanalysis (Reanalysis of the 21st Century, R21C)
- Contrarily, data assimilation at the GMAO is at a hinge point
  - Transition from GSI to JEDI-based assimilation procedure
  - How much more to develop?





### References

Gelaro, R., W. McCarty, M. J. Suarez, R. Todling, A. M. Molod, and coauthors, 2017. The Modern-Era Retrospective Analysis for Research and Applications, Version-2 (MERRA-2). J. Climate, 30, 5419-5454. DOI 10.1175/JCLI-D-16-0758.1

McCarty, Will, Lawrence Coy, Ronald Gelaro, Albert Huang, Dagmar Merkova, Edmond B. Smith, Meta Seinkiewicz, and Krzysztof Wargan, 2016. MERRA-2 Input Observations: Summary and Assessment. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2016-104606, Vol. 46, 61 pp. (available at: https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf)

