Diurnal Variation of the Planetary Boundary Layer Height Observed from GNSS Radio Occultation and Radiosonde Soundings over the Southern Great Plains

Kevin J. Nelson¹

Feiqin Xie¹, Chi O. Ao², and Mayra I. Oyola-Merced²

¹Texas A&M University – Corpus Christi, Corpus Christi, TX

²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

Background – Diurnal Cycle and Boundary Layers

- Solar heating induces strong oscillations in surface and atmospheric properties on 24-hr and 12-hr cycles (Dai and Trenberth, 2004)
- Amplitude and cause of diurnal cycle varies with location
 - Land: Higher amplitude; surface heating
 - Ocean: Lower amplitude, temperature mediation near coastlines
- Atmospheric (planetary) boundary layers come in many different forms depending on the local meteorological conditions
- Planetary boundary layer height (PBLH) is used to diagnose other properties in the boundary layer
- Atmospheric diurnal cycle also heavily influences PBLH
 - Vertical gradients in atmospheric properties allow for PBLH identification

Motivation

- Previous studies have used GPS RO to diagnose PBLH in various maritime regions
 - Ao et al. (2008,2012), Xie et al. (2011,2012), Guo et al. (2011), Winning et al. (2017)
- PBLH studies using GPS RO over land are relatively limited, and regionally focused or climatological
 - Basha and Ratnam (2009), Ao et al. (2012)
- Few studies use GPS RO to diagnose terrestrial boundary layer heights and consider diurnal oscillations of the PBLH and atmospheric variables within the PBL

Data and Methods – Data Range and Colocation

- Study period from 2007 to 2013, over Southern Great Plains
 - Relatively flat terrain allows for minimal terrain interaction
- ARM radiosondes from SGP sites
 - Primary site in Lamont, OK (C1)
 - Ancillary sites surrounding C1

- FORMOSAT-3/COSMIC Mission Profiles
 - Co-located (with ARM SGP radiosondes) refractivity profiles within 300 km and 3 hrs
- Approximately 65% of profiles reach below 500 m, 40% reach 200 m, and 10% reach surface

PBLH Identification in radiosondes and RO profiles

- Minimum/Maximum gradients in vertical profiles allow for identification of the PBLH
 - Seidel et al. (2010), Ao et al. (2008,2011,2012), Xie et al. (2011,2012)
- Some cases exhibit unique multi-layer structure
 - More difficult to detect true PBLH
- Disparities between PBLH derived from different thermodynamic variables

PBLH Statistics from Radiosondes - Refractivity

- $PBLH_{N}$ often found to be less than 200 m overnight
 - Higher PBLH_N less frequent
- PBLH_N distribution shifts toward higher PBLH_N during daytime
- PBLH_N in DJF trends toward lower values and $PBLH_{N}$ in JJA trends toward higher values
 - Influence of temperature on refractivity
- MAM and SON have very similar distributions of PBLH_M
 - **Transition seasons**

d

3

PBLH Statistics form Radiosondes - Temperature

- Seasonal distributions of $PBLH_{\tau}$ are similar to those of $PBLH_{N}$
 - Higher frequency at 12:00 LST
- Sharper decrease in PBLH_{τ} during overnight hours
 - Fewer PBLH₇ greater than 2 km

Diurnal PBLH Results – Radiosondes

- Diurnal amplitude of PBLH calculated with multilinear harmonic analysis
 - Dai et al. (2002), Xie et al. (2010)
 - PBLH anomaly calculated by removing mean PBLH for each variable
- PBLH₇ amplitude peaks at 0.691 km around 15:00 LST consistent with daytime heating
- PBLH_q anomaly amplitude peaks at 0.3 km around 00:00 LST
- PBLH_N anomaly amplitude peaks at 0.232 km around 17:00 LST

PBLH Statistics from Co-located GNSS RO Profiles

- PBLH_N from GNSS RO N profiles consistent with those from radiosondes
- Shallow (100-200 m) PBLH_N observed during nighttime in radiosondes only seen in RO profiles about 50% of the time.
 - Penetration and vertical resolution
 - Along-path averaging vs.
 "single point" profiles
 - Uneven topography and surface heating

Annual Diurnal PBLH – Co-located GNSS RO Profiles

- Good agreement between diurnal PBLH_N anomalies from radiosondes and from GNSS RO profiles
 - Radiosonde PBLH_N amplitude:
 232 m, GNSS RO RO PBLH_N amplitude: 283 m
 - Radiosonde PBLH_N peak time: 17:29 LST, GNSS RO PBLH_N peak time: 16:22 LST
- Conclusion: GNSS RO can resolve diurnal cycle of terrestrial PBLH with little amplitude or phase difference and similar margins of error

Seasonal Diurnal PBLH – Co-located GNSS RO Profiles

- Differences between GNSS RO and radiosondes are slightly larger due to smaller sample size in each bin, but still consistent with annual diurnal cycle
- PBLH_N amplitude changes due to seasonal temperature changes
- MAM and SON have characteristics of surrounding seasons and higher variability

Conclusions and Future Work

- GNSS RO able to observe fine structures in vertical profiles of atmospheric refractivity without significant bias compared to co-located radiosondes
- Gradient method of PBLH detection works well for both datasets to determine the PBLH derived from various thermodynamic variables
- GNSS RO PBLH distributions is consistent with that of radiosondes
 - Shallow PBLH is difficult to retrieve via remote sensing, but GNSS RO resolves approximately 50% of the shallow PBLH
- GNSS RO clearly detects diurnal cycle in PBLH_N consistent with radiosondes overall; DJF and JJA very consistent, slight phase shifts seen in MAM and SON
- Future Work:
 - Account for multi-layer structures in PBLH detection algorithm
 - Evaluate the impact of ducting on PBLH detection
 - Analyze the diurnal cycle analysis at different levels within boundary layer
 - Understand limitations of RO data in lowest 500 m above surface

Questions?

Acknowledgements:

- NASA grant number NNH14ZDA001N-GNSS
- NASA grant number NNX15AQ17G
- NASA JPL Visiting Researcher Internship, Summer 2019
- TAMUCC CMSS Research Assistantship Funding