The extraordinary Atlantic Niño of 2019/2020

Ingo Richter¹, Hiroki Tokinaga², Yuko Okumura³

¹ JAMSTEC, ² Kyushu University, ³ University of Texas at Austin

PIRATA-24/TAV 12 May 2021 Background

Composite Atlantic Niño from ERA5 criterion: 0.75 std dev of JJA ATL3

from Richter and Tokinaga (2021)

The Atlantic Niño II

SST (shd), 10m wind (vect), precip (cnt) during ND

from Okumura and Xie 2006

Decreasing variability in recent decades

LETTERS PUBLISHED ONLINE: 6 FEBRUARY 2011 | DOI: 10.1038/NGE01078 nature geoscience

Weakening of the equatorial Atlantic cold tongue over the past six decades

Hiroki Tokinaga¹* and Shang-Ping Xie^{1,2}

Seasonal and interannual variations of the equatorial cold tongue are defining features of the tropical Atlantic Ocean, with significant climatic¹⁻³ and biogeochemical⁴ effects. However, its long-term changes are poorly understood owing to biases in observations and climate models⁵. Here we use a suite of bias-corrected observations, and find that cold-tongue variability has weakened during the past six decades. We find that sea surface temperature has increased across the basin, with a local enhancement over the eastern equatorial Atlantic. This warming pattern of the sea surface is most pronounced during boreal summer, reducing the annual cycle through a positive ocean-atmosphere feedback. Specifically, the eastward-intensified warming leads to enhanced atmo-

from Tokinaga and Xie 2011

Decreasing variability in recent decades

ORAS4 SST std dev (K): 2000–2017 minus 1982–1999

from Prigent et al. 2020

ATL3 time series 1948-2018 NCEP/NCAR Reanalysis

The 2019/2020 event in context

OISST ATL3 for all years since 1982

time series linearly detrended

More context

ATL3 index for 2019/2020, NDJ composite, and JJA composite

Evolution of the 2019/2020 event

SST (shd) and 10m winds (vect) in ERA-5

ePIRATA temp anomalies (K) ave: 0N23W, 0N10W, 0N0E

Evolution in the ePIRATA data

GODAS: Ion/depth sections of budget terms

godas: advection terms [K/mth] 3S - 3N

AVISO SSH anomalies in 2019

Ion/time sections shading: 0.5S-0.5N contours: 3-4N

evidence for off-equatorial Rossby wave

Summary

- pronounced Atlantic Niño occurred in 2019/2020
- strongest event in 20 years, and possibly last 40
- vertical advection dominated the warming
- preceded by moderately strong eq. westerlies
- likely contribution from off-equatorial wind stress curl -> off-equatorial Rossby waves
- possibly other factors played a role too
- is AZM activity picking up again?

Detrended ATL3 index in 9 data sets ePIRATA, ICOADS, GODAS, ERA-5, ERSST, COBE, HadISST, OISST v2, OISST (v2+v2.1)

Detrended ATL3 index in 9 data sets ePIRATA, ICOADS, GODAS, ERA-5, ERSST, COBE, HadISST, OISST v2, OISST (v2+v2.1)

ePIRATA mixed layer heat budget

ATL4 u10 in reanalyses and obs

u10 (40-10W,3-8N) in reanalyses and obs

